Atomic Structure

EXERCISE-I

ELEMENTARY

Q. 1 (1)

(1) It consists of proton and neutron and these are also known as nucleones.

Q. 2 (3)

(3) Radius of nucleus $\simeq 10^{-15} \mathrm{~m}$.
Q. 3 (2)

The β-ray particle constitute electrons.

Q. 4 (3)

This is because chargeless particles do not undergo any deflection in electric or magnetic field.

Q. 5 (2)

Mass of neutron is greater than that of proton, meson and electron.
Mass of neutron $=$ mass of proton + mass of electron

Q. 6 (3)

Proton is the nucleus of $\mathrm{H}-$ atom ($\mathrm{H}-$ atom devoid of its electron).

Q. 7 (2)

According to quantum theory of radiation, a hot body emits radiant energy not continuously but discontinuously in the form of small packets of energy called quanta or photons.

Q. 8 (2)

According to the Bohr model atoms or ions contain one electron.
Q. 9 (1)
Q. 10 (1)
Q. 11 (1)
Q. 12 (1)

According to Hydrogen spectrum series.
Q. 13 (3)
Q. 14 (4)

According to de-Broglie $\left(\lambda=\frac{\mathrm{h}}{\mathrm{mv}}\right)$.
Q. 15 (3)
Q. 16 (3)

Hund's rule states that pairing of electrons in the orbitals of a subshell (orbitals of equal energy) starts
when each of them is singly filled.
Q. 17 (1)

Principal quantum no. tells about the size of the orbital.
Q. 18 (4)

If $\mathrm{n}=3$ then $1=0,1,2$ but not 3 .
Q. 19 (2)

Hund's rule states that pairing of electrons in the orbitals of a subshell (orbitals of equal energy) starts when each of them is singly filled.
Q. 20 (2)
Q. 21 (4)

When $n=3$ shell, the orbitals are $n^{2}=3^{2}=9$.
No. of electrons $=2 n^{2}$
Hence no. of orbital $=\frac{2 n^{2}}{2}=n^{2}$.
Q. 22 (4)

Orbitals are $4 \mathrm{~s}, 3 \mathrm{~s}, 3 \mathrm{p}$ and 3 d . Out of these $3 d$ has highest energy.
Q. 23 (2)

$$
\mathrm{N}_{7}^{14}=1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}_{\mathrm{x}}^{1} 2 \mathrm{p}_{\mathrm{y}}^{1} 2 \mathrm{p}_{\mathrm{z}}^{1}
$$

Q. 24 (3)
Q. 25 (1)

JEE-MAIN

OBJECTIVE QUESTIONS

Q. 1 (1)

Hydrogen atom contains 1 proton, 1 electron and no neutrons.
Q. 2 (4)
$\frac{(e / m)_{e}}{(e / m)_{\alpha}}=\frac{e / m_{e}}{2 e / 4 \times 1836 m_{e}}=\frac{3672}{1}$
Q. 3 (1)

Volume fraction $=\frac{\text { Volume of nucleus }}{\text { Total vol. of atom }}$
$=\frac{(4 / 3) \pi\left(10^{-13}\right)^{3}}{(4 / 3) \pi\left(10^{-8}\right)^{3}}=10^{-15}$
$\begin{array}{ll}\text { Q. } 4 & \text { (1) } \\ & \mathrm{Ne} \text { contains } 10 \text { electrons } \\ & \mathrm{O}^{2-} \text { contain } 10 \text { electrons }\end{array}$
Q. 5 (C)
$\mathrm{R}=\mathrm{R}_{0} \mathrm{~A}^{1 / 3}=1.3 \times 64^{1 / 3}=5.2 \mathrm{fm}$
Q. 6 (1)
$r \alpha\left(\frac{n^{2}}{Z}\right)$ As Z increases, radius of I orbit decreases.
Q. 7 (B)

$$
\begin{aligned}
& \mathrm{x} \rightarrow \mathrm{y}+{ }_{2} \mathrm{He}^{4} \\
& \mathrm{y} \rightarrow{ }_{8} \mathrm{O}^{18}+{ }_{1} \mathrm{H}^{1}
\end{aligned}
$$

Adding both eq.
$\mathrm{x} \rightarrow{ }_{2} \mathrm{He}^{4}+{ }_{8} \mathrm{O}^{18}+{ }_{1} \mathrm{H}^{1}$
By conservation of mass

$$
\begin{aligned}
\mathrm{X} & =4+18+1 \mathrm{gm} \\
& =23
\end{aligned}
$$

$23 \mathrm{gm} \rightarrow(2+10)$ moles neutrons.
$1 \mathrm{gm} \rightarrow \frac{12}{23}$ neutrone
$4.6 \mathrm{gm} \rightarrow \frac{12}{23} \times \frac{46}{10}=2.4$ neutrans

Q. 8 (2)

Given :
$\mathrm{P}=1 \mathrm{~kW}$
$\mathrm{P}=1 \times 10^{3}$ watt
$\mathrm{E}=10^{3} \mathrm{~J} / \mathrm{S}$ in one sec
$v=880 \mathrm{~Hz}$
$\therefore \mathrm{E}=\mathrm{nh} \nu$
$\Rightarrow 10^{3} \mathrm{x} \times 6.626 \times 10^{-34} \times 880$
$\Rightarrow \mathrm{x}=1.71 \times 10^{33}$ in one sec
Q. 9 (3)
$\mathrm{E}=\frac{\mathrm{hc}}{\lambda}$
$=\frac{1240}{31}=40$
K.E. $\max =40-12.8$

$$
=27.2 \mathrm{eV}
$$

$\frac{1}{2} \mathrm{mv}^{2}=27.2 \times 1.6 \times 10^{-19}$
$\mathrm{V}^{2}=\frac{54.4 \times 1.6 \times 10^{-19}}{9.1 \times 10^{-31}}$
$\mathrm{V}^{2}=9.56 \times 10^{12}$
$\mathrm{V}=3.09 \times 10^{6} \mathrm{~m} / \mathrm{sec}$.
Q. 10 (1)

Photons or quanta
Q. 11 (4)
$\mathrm{E}=\frac{\mathrm{hc}}{\lambda}$
$E \propto \frac{1}{\lambda}$
$\frac{E_{1}}{E_{2}}=\frac{4000}{2000} \Rightarrow$ i.e. $\frac{\lambda_{2}}{\lambda_{1}}=2$
Q. 12 (2)
$\lambda=\frac{c}{v}=\frac{3 \times 10^{8}}{8 \times 10^{15}}=3.75 \times 10^{-8} \mathrm{~m}$
Q. 13 (1)

$$
\lambda=\frac{c}{v}=\frac{3 \times 10^{8}}{400 \times 10^{6}}=0.75 \mathrm{~m}
$$

Q. 14 (3)

Violet colour has minimum wavelength so maximum energy.
Q. 15 (1)
I.E. of one sodium atom $=\frac{\mathrm{hC}}{\lambda}$
\& I.E. of one mole Na atom $=\frac{\mathrm{hC}}{\lambda} \mathrm{N}_{\mathrm{A}}$
$=\frac{6.62 \times 10^{34} \times 3 \times 10^{8} \times 6.02 \times 10^{23}}{242 \times 10^{-9}}=494.65 \mathrm{~kJ} . \mathrm{mol}$.
Q. 16 (3)

For photoelectric effect to take place, $\mathrm{E}_{\text {light }} \geq \mathrm{W}$
$\therefore \frac{\mathrm{hc}}{\lambda} \geq \frac{\mathrm{hc}}{\lambda_{0}}$ or $\lambda \leq \lambda_{0}$.
Q. 17 (4)

Photoelectric effect is a random phenomena. So, electron It may come out with a kinetic energy less than ($\mathrm{h} v-\mathrm{w}$) as some energy is lost while escaping out.
Q. 18 (D)

Power $=\frac{\mathrm{nhC}}{\lambda \times \mathrm{t}} \Rightarrow 40 \times \frac{80}{100}$
$=\frac{\mathrm{n} \times 6.62 \times 10^{-34} \times 3 \times 10^{8}}{620 \times 10^{-9} \times 20} \Rightarrow \mathrm{n}=2 \times 10^{21}$
Q. 19 (2)

We know that, for wave no.

$$
\begin{aligned}
& \bar{v}_{3}=\bar{v}_{1}+\bar{v}_{2} \\
& \frac{1}{\lambda_{3}}=\frac{1}{\lambda_{2}}+\frac{1}{\lambda_{1}}
\end{aligned}
$$

Q. 20 (2)

$$
\begin{aligned}
& r=0.529 \times \frac{n^{2}}{z} \AA \\
& =0.529 \times \frac{1^{2}}{1} \AA \\
& =0.529 \times 10^{-10} \mathrm{~m} \\
& =0.529 \times 10^{-8} \mathrm{~cm}
\end{aligned}
$$

Q. 21 (4)

$$
\begin{aligned}
& \frac{r_{3}=0.529 \times 3^{2} / z}{r_{1}=0.529 \times 1^{2} / z} \\
& \therefore r_{3}=9 r_{1}
\end{aligned}
$$

Q. 22 (A)
K.E. $\max =\frac{\mathrm{hc}}{\lambda}-\phi=8-5=3 \mathrm{eV}$
$\therefore \mathrm{V}_{0}=3 \mathrm{eV}$
Q. 23 (1)

Refrence level is $\mathrm{I}^{\text {st }}$ orbit
itself T. E. $=0$
Ratio becomes zero
Q. 24 (4)
$r=\infty$
Q. 25 (2)

Radius $=0.529 \frac{\mathrm{n}^{2}}{\mathrm{Z}} \AA=10 \times 10^{-9} \mathrm{~m}$
So, $\mathrm{n}^{2}=189$ or, $\mathrm{n} \approx 14$ Ans.
Q. 26 (2)
$E_{1}(H)=-13.6 \times \frac{1^{2}}{1^{2}}=-13.6 \mathrm{eV} ; E_{2}\left(\mathrm{He}^{+}\right)$
$=-13.6 \times \frac{2^{2}}{2^{2}}=-13.6 \mathrm{eV}$
$E_{3}\left(L^{2+}\right)=-13.6 \times \frac{3^{2}}{3^{2}}$
$=-13.6 \mathrm{eV} ; \mathrm{E}_{4}\left(\mathrm{Be}^{3+}\right)=-13.6 \times \frac{4^{2}}{4^{2}}=-13.6 \mathrm{eV}$
$\therefore \mathrm{E}_{1}(\mathrm{H})=\mathrm{E}_{2}\left(\mathrm{He}^{+}\right)=\mathrm{E}_{3}\left(\mathrm{Li}^{2+}\right)=\mathrm{E}_{4}\left(\mathrm{Be}^{3+}\right)$
Q. 27 (C)
$\mathrm{E}_{\mathrm{n}}=-78.4 \mathrm{kcal} /$ mole $=-78.4 \times 4.2=-329.28 \mathrm{~kJ} /$ mole
$=-\frac{329.28}{96.5} \mathrm{eV}=-3.4 \mathrm{eV}$. (energy of II orbit of H atom).
Q. 28 (1)
$\mathrm{V}=2.188 \times 10^{6} \frac{\mathrm{Z}}{\mathrm{n}} \mathrm{m} / \mathrm{s}$
Now, $V \propto \frac{Z}{n}$ so, $\frac{V_{\mathrm{L}^{2+}}}{\mathrm{V}_{\mathrm{H}}}=-\frac{\mathrm{Z}_{1} / \mathrm{n}_{1}}{\mathrm{Z}_{2} / \mathrm{n}_{2}}=\frac{3 / 3}{1 / 1}=1$ or,
$\mathrm{V}_{\mathrm{Li}^{2+}}=\mathrm{V}_{\mathrm{H}}$
Q. 29 (A)
$\mathrm{IE}_{1}+\mathrm{IE}_{2}+\mathrm{IE}_{3}=19800$
$\mathrm{IE}_{2}+\mathrm{IE}_{3}=19800-520$
$\mathrm{IE}_{2}+\mathrm{IE}_{3}=19280$
Q. 30 (1)
$\mathrm{r}_{1}-\mathrm{r}_{2}=24 \times\left(\mathrm{r}_{1}\right)_{\mathrm{H}}$
$\frac{0.529 \times \mathrm{n}_{1}^{2}}{1}-\frac{0.529 \times \mathrm{n}_{2}^{2}}{1}=24 \times 0.529$
$\therefore\left(n_{1}^{2}-n_{2}^{2}\right)=24$
So, $\mathrm{n}_{1}=5$ and $\mathrm{n}_{2}=1$
Q. 31 (C)
I.P. $=340 \mathrm{~V}$ so, I.E. $=340 \mathrm{eV}=13.6 \frac{\mathrm{Z}^{2}}{(1)^{2}}$
so, $\mathrm{Z}^{2}=25$ so, $\mathrm{Z}=5$ Therefore, (B) is correct option.
Q. 32 (3)
(a) Energy of ground state of $\mathrm{He}^{+}=-13.6 \times 2^{2}$ $=-54.4 \mathrm{eV}$ (iv)
(b) Potential energy of I orbit of H -atom $=-27.2 \times 1^{2}=-27.2 \mathrm{eV}$ (ii)
(c) Kinetic energy of II excited state of
$\mathrm{He}^{+}=13.6 \times \frac{2^{2}}{3^{2}}=6.04 \mathrm{eV}$ (i)
(d) Ionisation potential of $\mathrm{He}^{+}=13.6 \times 2^{2}=54.4 \mathrm{~V}$ (iii)
Q. 33 (3)
$\mathbf{S}_{1}: \mathrm{Be}^{2+}$ ion has 2 electron so Bohr model is not applicable.
$\mathrm{S}_{2}, \mathrm{~S}_{3}$ and S_{4} are correct statement.
Q. 34 (2)
\mathbf{S}_{1} : Potential energy of the two opposite charge system decreases with decrease in distance,
\mathbf{S}_{4} : The energy of $\mathrm{I}^{\text {st }}$ excited state of He^{+}ion

$$
\begin{aligned}
& =-3.4 \mathrm{Z}^{2}=-3.4 \times 2^{2} \\
& -13.6 \mathrm{eV} .
\end{aligned}
$$

S_{2} and S_{3} are correct statement.

Q. 35 (4)

$\frac{R}{R^{\prime}}=\frac{0.529 \times 4}{0.529 \times 9}$
$R^{\prime}=\frac{9 R}{4}$
$=2.25 \mathrm{R}$
Q. 36 (1)
$E_{n}=E_{1} \frac{Z^{2}}{n^{2}} E_{5}=-13.6 \times \frac{(1)^{2}}{(5)^{2}}=-0.54 e V$
Q. 37 (4)

$$
\lambda=\frac{\mathrm{hc}}{\Delta \mathrm{E}} \therefore \lambda \alpha \frac{1}{\Delta \mathrm{E}}
$$

Q. 38 (2)

Bohr

Q. 39 (2)

$$
\begin{aligned}
r_{1} & =0.529 \AA \\
r_{3} & =0.529 \times(3)^{2} \AA=9 \mathrm{x} \\
\text { so, } \lambda & =\frac{2 \pi \mathrm{r}}{\mathrm{n}}=\frac{2 \pi(9 \mathrm{x})}{3}=6 \pi \mathrm{x} .
\end{aligned}
$$

Q. 40 (2)
$\mathrm{T} \alpha \frac{\mathrm{n}^{3}}{z^{2}}$
$\frac{T_{1}}{T_{2}}=\frac{1^{3} / 1^{2}}{2^{3} / 1^{2}}=\frac{1}{8}$
Q. 41 (B)
(i) $\frac{U_{1,2}}{K_{1, z}}=\frac{+2 T \cdot E_{\cdot 1,2}}{-T \cdot E_{\cdot 1, z}}=\frac{13.6 \times 2^{2} / 1^{2} \times 2}{+13.6 \times Z^{2} / 1^{2}}$

$$
\begin{aligned}
& \Rightarrow \frac{8}{1}=\frac{2^{2}}{z^{2}} \times 2 \\
& Z=1
\end{aligned}
$$

(ii) $\frac{r_{1, z}}{r_{2,1}}=\frac{0.529 \times \frac{1^{2}}{z}}{0.529 \times \frac{2^{2}}{1}}=\frac{1}{8}$

$$
\frac{1}{4 z}=\frac{1}{8}
$$

$$
Z=2
$$

(iii)

$$
\begin{aligned}
& \frac{V_{1, Z}}{V_{3,1}}=\frac{2.18 \times 10^{6} \times Z / 1}{2.18 \times 10^{6} \times 1 / 3}=\frac{9}{1} \\
& \quad \Rightarrow Z \times 3=9 \\
& \quad \Rightarrow Z=3
\end{aligned}
$$

(iv) $\frac{T_{1,2}}{T_{2, z}}=\frac{n^{3} / Z^{2}}{n^{3} / Z^{2}}=\frac{1^{3} / 2^{2}}{2^{3} / Z^{2}}=\frac{9}{32}$

$$
\begin{aligned}
& \frac{z^{2}}{2^{3}}=\frac{9}{32} \\
& z=3
\end{aligned}
$$

Q. 42 (D

Is \rightarrow As it is the ground state

Q. 43 (2)

Balmer means transition
to $\mathrm{n}=2$

1. line $\rightarrow 3$ to 2
2. line $\rightarrow 4$ to 2
3. line $\rightarrow 5$ to 2
Q. 44 (2)
$\frac{1}{\mathrm{X}}=\mathrm{R}_{\mathrm{H}} \cdot 4\left\{\frac{1}{4}-0\right\}$
$R_{H}=\frac{1}{x}$
$\frac{1}{\lambda}=\mathrm{R}_{\mathrm{H}} \times 9\left\{\frac{1}{9}-\frac{1}{16}\right\}$
$\frac{1}{\lambda}=\frac{1}{x} \times 9\left\{\frac{16-9}{144}\right\}$
$\frac{1}{\lambda}=\frac{1}{x} \times 9\left\{\frac{7}{144}\right\}$
$\frac{1}{\lambda}=\frac{7}{16 x}$

$$
\lambda=\frac{16 x}{7}
$$

Q. 45 (2)
$\frac{1}{\lambda}=109677 \times 9$
$\lambda=1.01 \times 10^{-6} \mathrm{~cm}$
$\mathrm{E}=\frac{6.62 \times 10^{-34} \times 3 \times 10^{8}}{1.01 \times 10^{-8}}$
$=19.66 \times 10^{-18} \mathrm{~J}$
$\Rightarrow \frac{1}{2} m v^{2}=19.66 \times 10^{-18}$
$\mathrm{V}^{2}=\frac{39.32 \times 10^{-18}}{9.1 \times 10^{-31}}$
$\mathrm{V}^{2}=4.32 \times 10^{13}$
$\mathrm{V}^{2}=43.2 \times 10^{12}$
$\mathrm{V}=6.57 \times 10^{6}$
$\lambda_{\text {debroglie }}=\frac{6.62 \times 10^{-34}}{9.1 \times 10^{-31} \times 6.57 \times 10^{6}}$
$=1.17 \times 10^{-10} \mathrm{~m}$

$$
=1.17 \AA
$$

Q. 46 (2)

$$
\begin{aligned}
& \frac{1}{\lambda_{1}}=\mathrm{R}_{\mathrm{H}}\left(1-\frac{1}{4}\right) \\
& \frac{1}{\lambda_{1}}=\mathrm{R}_{\mathrm{H}} \times \frac{3}{4} \\
& \lambda_{1}=\frac{4}{3 \mathrm{R}_{\mathrm{H}}} \\
& \lambda_{2}=\frac{9}{8 \mathrm{R}_{\mathrm{H}}} \\
& \lambda_{1}-\lambda_{2}=\frac{1}{\mathrm{R}_{\mathrm{H}}}\left\{\frac{9}{8}-\frac{16}{15}\right\}
\end{aligned}
$$

$$
=\frac{1}{R_{H}}\left\{\frac{32-27}{24}\right\}=\frac{1}{R_{H}}\left\{\frac{5}{24}\right\}
$$

$$
\lambda_{2}=\frac{9 / 8}{R_{\mathrm{H}}}
$$

$$
\lambda_{3}=\frac{16}{15 R_{\mathrm{H}}}
$$

$\lambda_{2}-\lambda_{3}=\frac{1}{R_{H}}\left\{\frac{4}{3}-\frac{9}{8}\right\}$

$$
=\frac{1}{R_{H}}\left\{\frac{135-128}{120}\right\}=\frac{1}{R_{H}} \times \frac{7}{120}
$$

ratio $=\frac{5 / 24}{7 / 120}=3.5$
Q. 47
(1)
$\frac{1}{\lambda_{\text {Lymen }}}=\mathrm{R}_{\mathrm{H}}\left\{1-\frac{1}{4}\right\}$
$\lambda_{\text {Lymen }}=\frac{4}{3 R_{H}}$
$\frac{1}{\lambda_{\text {Balmer }}}=\mathrm{R}_{\mathrm{H}} \times 4\left\{\frac{1}{4}-\frac{1}{16}\right\}$
$\lambda_{\text {Balmer }}=\frac{16}{8 \times 3 R_{H}}$
$\frac{\lambda_{\text {Lymen }}}{\lambda_{\text {Balmer }}}=\frac{4 / 3 R_{H}}{4 / 3 R_{H}}=\frac{1}{1} \quad 1: 1$
Q. 48 (3)
$\left(n_{2}^{2}-n_{1}^{2}\right)=8$
$\left(\mathrm{n}_{2}-\mathrm{n}_{1}\right)\left(\mathrm{n}_{2}+\mathrm{n}_{1}\right)=8$
$\therefore\left(\mathrm{n}_{2}-\mathrm{n}_{1}\right)=8 / 4$
$\mathrm{n}_{2}-\mathrm{n}_{1}=2$
$\mathrm{n}_{2}+\mathrm{n}_{1}=4$
$\therefore \mathrm{n}_{2}=3$
$\mathrm{n}_{1}=1$
$\frac{1}{\lambda}=\mathrm{R}_{\mathrm{H}} \times 4\left\{1-\frac{1}{9}\right\}$
$\lambda=\frac{9}{32 \mathrm{R}_{\mathrm{H}}}$

Q. 49 (2)

First Excited level $=2$ \therefore ninth level $=10$

Total line $=6$
Q. $50 \quad$ (2)

When electron falls from n to 1 , total possible number of lines $=\mathrm{n}-1$.
Q. 51 (1)
Li^{2+} and He^{+}are single electron species.
Q. 52 (3)

Visible lines \Rightarrow Balmer series ($5 \rightarrow 2,4 \rightarrow 2,3 \rightarrow 2$). So, 3 lines.
Q. 53 (4)
$\frac{1}{\lambda}=\mathrm{R}_{\mathrm{H}} \times 4\left\{\frac{1}{9}-\frac{1}{16}\right\}$
$\frac{1}{m}=R_{H} \times \frac{7}{36}$
$\frac{1}{\lambda_{\text {required }}}=\frac{36}{7 m} \times 16\left\{\frac{1}{9}\right\}$
$\frac{1}{\lambda_{\text {required }}}=\frac{36}{7 m} \times 16\left\{\frac{1}{9}\right\}$
$\lambda_{\text {req. }}=\frac{7 \mathrm{~m}}{64}$
Q. 54 (3)
infrared lines $=$ total lines - visible lines - UV lines
$=\frac{6(6-1)}{2}-4-5=15-9=6$.
(visible lines $=4 \quad 6 \rightarrow 2,5 \rightarrow 2,4 \rightarrow 2,3 \rightarrow 2)$
(UV lines $=5 \quad 6 \rightarrow 1,5 \rightarrow 1,4 \rightarrow 1,3 \rightarrow 1,2 \rightarrow 1$)
Q. 55 (4)

According to energy, $\mathrm{E}_{4 \rightarrow 1}>\mathrm{E}_{3 \rightarrow 1}>\mathrm{E}_{2 \rightarrow 1}>\mathrm{E}_{3 \rightarrow 2}$.
According to energy, Violet $>$ Blue $>$ Green $>$ Red.
\therefore Red line $\Rightarrow \rightarrow 2$ transition.
Q. 56 (4)

For $1^{\text {st }}$ line of Balmer series

$$
\overline{\mathrm{V}}_{1}=\mathrm{R}_{\mathrm{H}}(3)^{2}\left[\frac{1}{(2)^{2}}-\frac{1}{(3)^{2}}\right]=9 \mathrm{R}\left(\frac{5}{36}\right)=\frac{5}{4} \mathrm{R}
$$

For last line of Pachen series

$$
\begin{aligned}
\overline{\mathrm{V}}_{2} & =\mathrm{R}_{\mathrm{H}}(3)^{2}\left[\frac{1}{(3)^{2}}-\frac{1}{(\infty)^{2}}\right]=\mathrm{R} \text { so, } \overline{\mathrm{V}}_{1}-\overline{\mathrm{v}}_{2}= \\
\frac{5}{4} \mathrm{R}-\mathrm{R} & =\frac{\mathrm{R}}{4} .
\end{aligned}
$$

Q. 57 (3)

For an α particle, $\lambda=\frac{0.101}{\sqrt{V}} \AA$.
Q. 58 (2)
$\lambda \propto \frac{\mathrm{n}}{\mathrm{Z}} \therefore \frac{\mathrm{n}_{1}}{\mathrm{Z}_{1}}=\frac{\mathrm{n}_{2}}{\mathrm{Z}_{2}}$
or $\frac{2}{3}=\frac{4}{6}\left(\mathrm{n}=4\right.$ of C^{5+} ion).
Q. 59 (1)

For a charged particle $\lambda=\frac{\mathrm{h}}{\sqrt{2 \mathrm{mqV}}}, \therefore \lambda \propto \frac{1}{\sqrt{\mathrm{~V}}}$.
Q. 60 (C)
$\frac{1}{2} \mathrm{mV}^{2}=6 \times 1.6 \times 10^{-19}$
$\mathrm{V}^{2}=\frac{12 \times 1.6 \times 10^{-19}}{9.1 \times 10^{-31}}$
$\mathrm{V}^{2}=2.10 \times 10^{12}$
$\mathrm{V}=1.44 \times 10^{6} \mathrm{~m} / \mathrm{sec}$
$\lambda=\frac{6.62 \times 10^{-34}}{1.44 \times 10^{6} \times 9.1 \times 10^{-31}}$
$=0.5 \times 10^{-9}$
$\Delta x \cdot \frac{\Delta \lambda}{0.25 \times 10^{-18}}=\frac{1}{\lambda}$
$\frac{7}{22} \times 10^{-9} \times \frac{\Delta \lambda}{0.25 \times 10^{-18}}=\frac{1}{4 \pi}$
$\Delta \lambda=\frac{0.25 \times 10^{-9}}{4}$
$=0.0625 \times 10^{-9}$
$=0.625 \AA$

Q. 61 (4)

$\frac{\lambda_{1}}{\lambda_{2}}=\sqrt{\frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}}=\sqrt{\frac{200}{50}}=\frac{2}{1}$.
Q. 62 (1)

Mass of α particle $=4$ (mass of proton)
Mass of proton $=1840$ (mass of e^{-})
Let
Mass of $\mathrm{e}^{-}=\mathrm{m}$
\therefore Mass of $\mathrm{p}^{+}=1840 \mathrm{~m}$
and mass of α particle $=7360 \mathrm{~m}$
$\frac{1}{2} \mathrm{meV}^{2}=16 \mathrm{E}$
$V_{e}^{2}=\frac{32 E}{m}$
$V_{p}^{2}=\frac{8 E}{1840 m}$
$V_{\alpha}^{2}=\frac{E}{7360 m}$
Q. 63 (2)
$\lambda=\frac{\mathrm{h}}{\mathrm{mv}}$
$\mathrm{p}=\frac{\mathrm{h}}{\lambda}$
$\frac{d p}{d \lambda}=\frac{d}{d \lambda}\left(\frac{L}{A}\right)$
$\left|\frac{d p}{d \lambda}\right|=\left|\frac{-h}{\lambda^{2}}\right|$
$\mathrm{dp}=\frac{\mathrm{h}}{\lambda^{2}} . \Delta \lambda$
$\therefore \Delta x \cdot \frac{\mathrm{~h}}{\lambda^{2}} \Delta \lambda \geq \frac{\mathrm{h}}{4 \pi}$
$\Delta x \cdot \frac{\Delta \lambda}{\lambda^{2}}=\frac{1}{4 \pi}$
$\Delta \mathrm{X}=\frac{\lambda}{\Delta \lambda} \times \frac{1}{4 \pi}$
$=\frac{\left(5 \times 10^{-7}\right)^{2}}{10^{-12} \times 4 \pi}$
Ans. 0.0199 m
Q. 64 (3)
$\Delta \mathrm{p} . \Delta \mathrm{x}=\frac{\mathrm{h}}{4 \pi} \Rightarrow \Delta \mathrm{x}=\frac{6.62 \times 10^{-34}}{4 \times 3.14 \times 1 \times 10^{-5}}=5.27 \times$ $10^{-30} \mathrm{~m}$.
Q. 65 (3)

$$
\begin{aligned}
& \lambda=\frac{\mathrm{h}}{\mathrm{mv}}=\frac{6.626 \times 10^{-34}}{3.1 \times 10^{-31} \times 3 \times 10^{8} \times 10 / 100}=2.4 \\
& \times 10^{-9} \mathrm{~cm}
\end{aligned}
$$

Q. 66 (1)

5-fold degenerate
All d-orbitals are of same energy.
Q. 67 (3)

Q. 68 (3)

Q. 69 (A)

As graph is not starting from origin.
\therefore For s-subshell with 1 radial no.
i.e., $n-\ell-1=1$
$\Rightarrow \mathrm{n}-0-1=1 \Rightarrow \mathrm{n}=2$
$\therefore 2 \mathrm{~s}$
Q. 70 (A)

Graph must be in increasing order
Q. 71 (B)
$\Psi=0$ at only one point.
Q. 72 (4)
Q. 73 (2)
$\mathrm{Na}^{+}, \mathrm{Co}^{+2}, \mathrm{Cr}^{2+}, \mathrm{Fe}^{+3}$
M. M. $(\mu)=\sqrt{n(n+2)}$
we get $\mathrm{Na}^{+}, \mathrm{Co}^{+2}, \mathrm{Cr}^{2+}, \mathrm{Fe}^{+3}$
Q. 74 (2)
O.A.M. $=\frac{h}{2 \pi} \sqrt{\ell(\ell+1)}$
here $l=0$
$\mathrm{OAM}=$ zero
Q. 75 (4)

Spin
Q. 76 (1)

$$
\begin{aligned}
& { }_{6} \mathrm{C} \rightarrow 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{2} \\
& \begin{array}{|l|l|l|}
\hline 1 & \uparrow & \\
\hline
\end{array} \\
& \text { (3) } \\
& 5 \mathrm{p} \text {, as using }(\mathrm{n}+1) \text { rule energy of } 5 \mathrm{p}>4 \mathrm{~d}
\end{aligned}
$$

Q. 78 (1)

Orbital angular momentum $=\sqrt{\ell(\ell+1)} \frac{\mathrm{h}}{2 \pi}=0$.
$\therefore \ell=0$ (s orbital).

Q. 79 (4)

$\mathrm{Cu}: 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{1}$.
$\therefore \mathrm{Cu}^{2+}: 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6} 3 \mathrm{~d}^{9}$ or $[\mathrm{Ar}] 3 \mathrm{~d}^{9}$.

Q. 80 (1)

Magnetic moment $=\sqrt{n(n+2)}=\sqrt{24}$ B.M.
\therefore No. of unpaired electron $=4$.
$X_{26}: 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{6} 4 s^{2}$.
To get 4 unpaired electrons, outermost configuration will be $3 \mathrm{~d}^{6}$.
\therefore No. of electrons lost $=2\left(\right.$ from $\left.4 \mathrm{~s}^{2}\right)$.
$\therefore \mathrm{n}=2$.
Q. 81 (4)

10 electrons \rightarrow Neon
Q. 82 (4)
${ }_{26} \mathrm{Fe} \rightarrow 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6} 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{6}$
$\mathrm{Fe}^{2+} \rightarrow 4 \mathrm{~s}^{0} 3 \mathrm{~d}^{6}$

Q. 83 (2)
$\sqrt{n(n+2)}=\sqrt{35}$
$\therefore \mathrm{n}=5$
$\mathrm{x}^{3+} \rightarrow 4 \mathrm{~s}^{0} 3 \mathrm{~d}^{5}$
$\mathrm{x} \rightarrow 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{6}$
i.e., ${ }_{26} \mathrm{Fe}$

Q. $84 \quad$ (2)

$\mathrm{Zn}^{2+} \quad: \quad[\mathrm{Ar}] 3 \mathrm{~d}^{10}$ (0 unpaired electrons).
$\mathrm{Fe}^{2+} \quad: \quad[\mathrm{Ar}] 3 \mathrm{~d}^{6}$ (4 unpaired electrons) maximum.
$\mathrm{Ni}^{3+} \quad: \quad[\mathrm{Ar}] 3 \mathrm{~d}^{7}$ (3 unpaired electrons).
$\mathrm{Cu}^{+} \quad: \quad[\mathrm{Ar}] 3 \mathrm{~d}^{10}$ (0 unpaired electrons).
Q. 85 (4)
$d^{7}: 3$ unpaired electrons.
\therefore Total spin $= \pm \frac{\mathrm{n}}{2}= \pm \frac{3}{2}$.
Q. 86 (1)
$X_{23}: 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{3} 4 s^{2}$.
No. of electron with $\ell=2$ are $3\left(3 \mathrm{~d}^{3}\right)$.
Q. 87 (B)
$\mathrm{Cr}(\mathrm{Zn}=24)$
electronic configuration is : $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{1}$
$3 d^{5}$
so, no of electron in $\ell=1$ i.e. p subshell is 12 and no of electron in $\ell=2$ i.e. d subshell is 5 .

Q. 88 (1)

Orbital angular momenting $=\frac{h}{2 \pi} \sqrt{\ell(\ell+1)}$
$1 \mathrm{~s} \rightarrow 0$
$3 \mathrm{~s} \rightarrow 0 \quad\} \quad(\because \ell=0$ for s$)$
For $3 \mathrm{~d}=\frac{\mathrm{h}}{2 \pi} \sqrt{2(2+1)} \quad(\ell=2$ for d$)$
$=\mathrm{h} \sqrt{6}$
Q. 89 (4)
$\mathrm{Cl}_{17}{ }^{-}:[\mathrm{Ne}] 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6}$.
Last electron enters 3p orbital.
$\therefore \quad \ell=1$ and $\mathrm{m}=1,0,-1$.
Q. 90 (3)

Number of radial nodes $=\mathrm{n}-\ell-1=1, \mathrm{n}=3$.
$\therefore \quad \ell=1$.
Orbital angular momentum $=\sqrt{\ell(\ell+1)} \frac{\mathrm{h}}{2 \pi}=$ $\sqrt{2} \frac{\mathrm{~h}}{2 \pi}$.
Q. 91 (3)
$\mathrm{Cl}_{17}:[\mathrm{Ne}] 3 \mathrm{~s}^{2} 3 \mathrm{p}^{5}$.
Unpaired electron is in $3 p$ orbital.
$\therefore \mathrm{n}=3, \ell=1, \mathrm{~m}=1,0,-1$.
Q. 92 (1)
$\mu=\sqrt{\mathrm{n}(\mathrm{n}+2)}$
${ }_{23} \mathrm{~V}^{4+} \rightarrow 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6} 3 \mathrm{~d}^{1}$
\therefore no of unpaired $\mathrm{e}^{-}=1$
$\mu=\sqrt{1(1+2)}=\sqrt{3}=1.732$
Q. 93 (3)
$\mathrm{n} \ell$ no. of e^{-}
$3 \mathrm{~s} \ell=0 \rightarrow \mathrm{~s}$
${ }_{30} \mathrm{Zn}^{2+} \rightarrow 3 \mathrm{~d}^{10} 4 \mathrm{~s}^{0}$
no. of unpaired $\mathrm{e}^{-}=0$

JEE-ADVANCED
OBJECTIVE QUESTIONS
Q. 1
$\mathrm{E}=\frac{\mathrm{hc}}{\lambda}=\frac{6.6 \times 10^{-34} \times 3 \times 10^{8}}{854 \times 10^{-10}}$
For 1 mole
$\mathrm{E}_{\text {mole }}=\frac{6.626 \times 10^{-34} \times 10^{18} \times 3 \times 6.022 \times 10^{23}}{854}$
$=\frac{6.626 \times 10^{7} \times 3 \times 6.022}{854}$
$=0.140 \times 10^{7} \mathrm{~J} / \mathrm{mole}$
$=1.4 \times 10^{3} \mathrm{KJ} / \mathrm{mole}$ Ans.
Q. 2 (A)

Energy $=$ Charge \times volts
$=1.6 \times 10^{-19} \times 4.5 \mathrm{~J}$
$\mathrm{E}=\frac{\mathrm{hc}}{\lambda}$
$\bar{v}=\frac{1.6 \times 10^{-19} \times 4.5}{6.62 \times 10^{-34} \times 3 \times 10^{8}}$
$=3.63 \times 10^{6} \mathrm{~m}^{-1}$ Ans.
Q. 3 (D)
$\mathrm{V}=\frac{\lambda}{\mathrm{T}}$
$\mathrm{V}=\lambda . v$
$3 \times 10^{8}=\lambda \times 5 \times 10^{13}$
$\lambda=\frac{3}{5} \times 10^{-5}$
$=0.6 \times 10^{-5} \mathrm{~m}$
$\mathrm{E}=\frac{6.6 \times 10^{-34} \times 3 \times 10^{8}}{0.6 \times 10^{-5}} \Rightarrow 33 \times 10^{-21}$
No. of photons $=\frac{330}{33 \times 10^{-21}}$
$=10^{22}$ photons Ans.
Q. 4 (C)
$\mathrm{E}_{\text {photon }}=\frac{\mathrm{hc}}{\lambda}$
$=\frac{1240}{550}=2.25 \mathrm{eV}$
no. of photons $=\frac{10^{-17}}{2.25 \times 1.6 \times 10^{-19}}$

$$
\begin{aligned}
& =0.277 \times 10^{2} \\
& =27.7 \text { photons } \quad=28 \text { photons Ans. }
\end{aligned}
$$

Q. 5 (C)
ol. $\lambda=58.44 \mathrm{~nm}$

$$
\begin{aligned}
& \overline{\mathrm{v}}=\frac{1}{\lambda}=\frac{10^{7}}{58.44} \mathrm{~cm}^{-1}=17115.67 \mathrm{~cm}^{-1} \\
& \overline{\mathrm{v}}_{\text {req. }}=17115.67-485.7 \\
& \quad=166258.67 \mathrm{~cm}^{-1} \\
& \therefore \mathrm{E}=\frac{\mathrm{hc}}{\lambda}=\mathrm{hc} \overline{\mathrm{v}} \\
& =6.62 \times 10^{-34} \times 3 \times 10^{8} \times 16625867 \\
& =3.3 \times 10^{8} \times 10^{8} \times 10^{-34} \\
& =3.3 \times 10^{-18} \mathrm{~J} \text { Ans. }
\end{aligned}
$$

Q. 6 (A)

Let absored e^{-}be n_{1} and emitted e^{-}be n_{2}
$\frac{\frac{n_{2} \mathrm{hc}}{\lambda_{2}}}{\frac{n_{1} \mathrm{hc}}{\lambda_{1}}}=\frac{E \times \frac{47}{100}}{E}$
$\frac{n_{2} \lambda_{1}}{n_{1} \lambda_{2}}=\frac{47}{100}$
$\frac{\mathrm{n}_{2}}{\mathrm{n}_{1}}=\frac{47 \times 5080}{100 \times 4530}$
$\frac{\mathrm{n}_{2}}{\mathrm{n}_{1}}=0.527$

Q. $7 \quad$ B)

The photons will strike the metal like only on shaded part and rest photons will escape out.
\therefore Part Qd circular disc where
photons will strike $=\frac{120}{360}=\frac{1}{3}$
$\therefore \frac{1}{3}^{\text {rd }}$ part the disc.
Total energy $=90 \mathrm{~J}$ per sec.
$\mathrm{E}_{\text {phaton }}=\frac{1240}{400}=3.1 \mathrm{eV}$

No. of photons $=\frac{90}{3.1 \times 10^{-19} \times 1.6}$
No. of photo e^{-}ejected $=\frac{90}{3.1 \times 1.6 \times 10^{-19}} \times \frac{1}{3}$
\therefore Magnitude of Photocurrent
$\equiv \frac{90}{3.1 \times 1.6 \times 10^{-19}} \times \frac{1}{3} \times 1.6 \times 10^{-19}$
$=\frac{90}{3.1 \times 3}=9.78 \mathrm{amp}=10 \mathrm{amp} \quad$ Ans.
Q. 8 (D)

Stopping potential depends on metal surface or emitter's properties.
Q. 9 (B)

$$
\begin{aligned}
& \mathrm{r}_{\mathrm{H}(1 \mathrm{~s} \text { orbit) }}=0.529 \times 10^{-10} \mathrm{~m} \\
& \mathrm{r}_{\mathrm{e}}=16 \times 0.529 \times 10^{-10} \mathrm{~m} \\
& \quad=16 \times 0.529 \AA
\end{aligned}
$$

T. E. $=-\frac{1}{2} \frac{K Z e^{2}}{r}$
$=-\frac{1}{2} \times \frac{9 \times 10^{9} \times 1 \times 1.6 \times .1 .6 \times 10^{-19} \times 10^{-19}}{16 \times 0.529}$
$\Rightarrow-13.6 \times 10^{-20} \mathrm{~J} \Rightarrow-1.36 \times 10^{-19} \mathrm{~J}$ Ans.
Q. 10 (B)
$\mathrm{r}=0.85 \mathrm{~nm}$
$=8.5 \AA$

$$
8.5=0.529 \frac{\mathrm{n}^{2}}{\mathrm{Z}}
$$

$$
\mathrm{n}^{2}=\frac{8.5}{0.529}
$$

$$
\mathrm{n}^{2}=16 \Rightarrow \mathrm{n}=4
$$

$$
\mathrm{V}=2.18 \times 10^{6} \times \frac{\mathrm{z}}{\mathrm{n}} \quad \mathrm{~m} / \mathrm{s}
$$

$$
=2.18 \times 10^{6} \times \frac{1}{4}
$$

$$
=5.45 \times 10^{5} \mathrm{~m} / \mathrm{sec} \text { Ans. }
$$

Q. 11 (B)

$-3.4=-13.6 \times \frac{z^{2}}{n^{2}}$
$\mathrm{n}^{2}=4$
$\mathrm{n}=2$ (Angular momentum $=\frac{\mathrm{nh}}{2 \pi}=\frac{2 \mathrm{~h}}{2 \pi}=\frac{\mathrm{h}}{\pi}$)
$\frac{\mathrm{h}}{\pi}$ Ans.
Q. 12 (D)
$\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}=\frac{\mathrm{n}_{1}^{3}}{\mathrm{n}_{2}^{3}}=\frac{1^{3}}{2^{3}}=\frac{1}{8}$.
$\because\left(\mathrm{T}=\frac{2 \pi \mathrm{r}}{\mathrm{V}}\right)$
so, $T \propto \frac{\mathrm{n}^{3}}{\mathrm{z}^{2}}$
Q. 13 (C)
$\frac{r_{1}}{r_{2}}=\frac{n_{1}^{2}}{n_{2}^{2}}=\frac{R}{4 R} \Rightarrow \frac{n_{1}}{n_{2}}=\frac{1}{2} \therefore \frac{T_{1}}{T_{2}}=\frac{n_{1}^{3}}{n_{2}^{3}}=\frac{1}{8}$.

Q. 14 (A)

Vel. of e^{-}in $\mathrm{n}=2=2.18 \times 10^{6} \times \frac{\mathrm{z}}{\mathrm{n}}$
$=1.09 \times 10^{6} \mathrm{~m} / \mathrm{s}$
Dist ${ }^{\mathrm{n}}$ travelled in $10^{-8} \mathrm{sec}=1.09 \times 10^{6} \times 10^{-8}$
$=1.09 \times 10^{-2} \mathrm{~m}$
Circum ference $=2 \pi \mathrm{r}$

$$
\begin{aligned}
& =2 \times \pi \times 0.529 \times 4 \times 10^{-10} \\
& =4.23 \pi \times 10^{-10} \mathrm{~m}
\end{aligned}
$$

\therefore revolutions $=\frac{1.09 \times 10^{-2}}{4.23 \pi \times 10^{-10}}$
$=0.08 \times 10^{8} \mathrm{rev}$
$=8 \times 10^{6}$ rev Ans.
Q. 15 (A)
$\mathrm{f}_{\mathrm{rev}}=\frac{\mathrm{V}}{2 \pi \mathrm{r}}$
$=\frac{2.18 \times 10^{6} \times 7}{2 \times 22 \times 0.529 \times 10^{-10}}$
$=0.6556 \times 10^{16} \mathrm{~Hz}$
$=6556 \times 10^{12} \mathrm{~Hz}$ Ans.
Q. 16 (B)
$\mathrm{IP}=13.6 \mathrm{Z}^{2}=16$ (given).
$1^{\text {st }}$ excitation potential $=13.6 \times \frac{3}{4} \times Z^{2}$
$=16 \times \frac{3}{4}=12 \mathrm{~V}$.
$\mathrm{IP}=13.6 \mathrm{Z}^{2}=16$ (given) .
Q. 17
$\mathrm{J}^{2}=\mathrm{m}^{2} \mathrm{v}^{2} \mathrm{r}^{2}$
or $\frac{\mathrm{J}^{2}}{2}=\left(\frac{1}{2} m v^{2}\right) m r^{2} \quad$ or K.E. $=\frac{\mathrm{J}^{2}}{2 m r^{2}}$
Q. 18 (D)
$I_{n}=\frac{e V_{n}}{2 \pi r_{n}}=\frac{e \times\left(\frac{2 \pi K e^{2}}{n h}\right)}{2 \pi \times\left(\frac{n^{2} h^{2}}{4 \pi^{2} m e^{2} K}\right)}=\frac{4 \pi^{2} m k^{2} e^{5}}{n^{3} h^{3}}$.
Q. 19 (D)

Energy required per atom $=\frac{192000}{6.022 \times 10^{23}}$
$=31883.09 \times 10^{-23} \mathrm{~J}$
$=\frac{31.88 \times 10^{-20}}{1.6 \times 10^{-19}}$
$=19.92 \times 10^{1}$
$=1.992 \mathrm{eV}$
$=2 \mathrm{eV}$
$\lambda=\frac{h c}{E}$
$=\frac{1240}{1992}=623.11 \mathrm{~nm}$
$\Rightarrow 6231.1 \AA$ Ans.
Q. 20 (B)
no. of photons $=\frac{0.01 \times 6 \times 10^{23}}{0.2}$
$=3 \times 10^{22}$ Ans.
Quantum yield $=\frac{\text { Molecules reacting }}{\text { quanta absorbed }}$

Q. 21 (B)

Energy per molecule $=\frac{243000}{6.022 \times 10^{23}}$
$=40.35 \times 10^{-20}$
$40.35 \times 10^{-20}=\frac{6.62 \times 10^{-34} \times 3 \times 10^{8}}{\lambda}$
$\lambda=4.9 \times 10^{-7} \mathrm{~m}$ Ans.
Q. 22 (C)

Energy required per molecule $=450530 \mathrm{~J}$
$=\frac{6.62 \times 10^{-34} \times 3 \times 10^{8}}{253.7 \times 10^{-9}}$
$=0.078 \times 10^{-17} \mathrm{~J}$
$=0.078 \times 10^{-17} \times 10^{23} \times 6.02 \mathrm{~J} / \mathrm{mol}$
$=0.47 \times 10^{6} \mathrm{~J} / \mathrm{mol}$
K. E. $=470-430.53$
$=39.47 \mathrm{KJ}$
$\%=\frac{39.47}{470} \times 100$
$=8.38 \%$ Ans.

Q. 23 (A)

$$
\sqrt{v}=\mathrm{a}(\mathrm{z}-\mathrm{b})=\sqrt{\frac{\mathrm{c}}{\lambda}}=\mathrm{a}(29-\mathrm{b})
$$

or $\sqrt{\frac{3 \times 10^{8}}{15.42 \times 10^{-9}}}=\mathrm{a}(29-\mathrm{b})$
or $13.94 \times 10^{7}=1(29-b)$
\qquad
also,

$$
\begin{align*}
& \sqrt{\frac{3 \times 10^{8}}{7.12 \times 10^{-9}}}=\mathrm{a}(29-\mathrm{b}) \\
\Rightarrow & 20.52 \times 10^{7}=\mathrm{a}(29-\mathrm{b}) \tag{2}
\end{align*}
$$

Dividing eq. (1) and (2)

$$
\frac{13.94}{20.52}=\frac{29-b}{42-b}
$$

Solving we get
$\mathrm{b}=\frac{60}{47}=1.27$
$\therefore \mathrm{a}=\frac{20.52 \times 10^{7}}{(42-1.27)}=0.5 \times 10^{7}$
$\Rightarrow \sqrt{\frac{3 \times 10^{8}}{22.85 \times 10^{-9}}}=0.5 \times 10^{7}(z-1.27)$
$11.45 \times 10^{7}=0.5 \times 10^{7}(z-1.27)$
$\mathrm{z}=22.9+1.27 \approx 24$ Ans.
Q. 24 (A)
$\lambda=\sqrt{\frac{150}{\text { volt }}} \AA$
$=\sqrt{\frac{150}{100 \times 10^{3}}}$

$$
\begin{aligned}
& =\sqrt{15 \times 10^{-4}} \\
& =0.0387 \AA \\
& =3.88 \mathrm{pm} \quad \text { Ans. }
\end{aligned}
$$

Q. 25 (B)

Total energy $=\frac{13.6 Z^{2}}{n^{2}}=\frac{13.6(Z)^{2}}{(4)^{2}}=3.4 \mathrm{eV}$
Now K.E. $=3.4-1.4=2 \mathrm{eV}$
Now, Total energy $=2+4=6 \mathrm{eV}$ i.e. potential $=6 \mathrm{~V}$
For electron $\lambda=\sqrt{\frac{150}{\mathrm{~V}}}$ so $\lambda=5 \AA$.
Q. 26 (A)

Number of lines in Balmer series $=2$.
$\therefore \mathrm{n}=4$ (lines will be $4 \rightarrow 2,3 \rightarrow 2$).
KE of ejected photoelectrons $=\mathrm{E}_{\text {photon }}-\mathrm{BE}_{\mathrm{n}}=13-$ $\frac{13.6}{4^{2}}=13-0.85=12.15 \mathrm{eV}$.
Q. 27 (B)

$$
\ln \left(\frac{A_{n}}{A_{1}}\right)=\ell n\left(\frac{4 \pi r_{n}^{2}}{4 \pi r_{1}^{2}}\right)=\ln \left(\frac{r_{n}}{r_{1}}\right)^{2}
$$

$$
=\ln \left(\frac{0.529 \times n^{2} / 1}{0.529 \times 1^{2} / 1}\right)=\ln \left(n^{4}\right)
$$

$=4 \ell \mathrm{n}(\mathrm{n})$
Using the straight line eq. with zero intercept $\mathrm{y}=\mathrm{mx}$
comparing the eq. we get slope $=4 \&$ line passing through origin.
Q. 28 (C)
(C)

For Lymen series

$$
\frac{1}{\lambda}=R_{H} Z^{2}\left(1-\frac{1}{\mathrm{n}_{2}^{2}}\right)=109700\left(1-\frac{1}{16}\right)
$$

$\frac{1}{\lambda}=109700 \times \frac{15}{16}$
$\frac{1}{\lambda}=102843.75$
$\lambda=9.72 \times 10^{-6} \mathrm{~cm}$
$\lambda=9.72 \times 10^{-8} \mathrm{~m}$ Ans.
Q. 30 (C)
$\lambda=1093.6 \mathrm{~nm}$ $=1093.6 \times 10^{-9} \mathrm{~m}$
$\frac{1}{1093.6 \times 10^{-9}}=\mathrm{R}_{\mathrm{H}} Z^{2}\left(\frac{1}{3^{2}}-\frac{1}{\mathrm{n}^{2} \text { wight }}\right)$
$\frac{9.14 \times 10^{5}}{10973000}=\left(\frac{1}{9}-\frac{1}{n^{2}}\right)$
$0.083=\frac{1}{9}-\frac{1}{\mathrm{n}^{2}}$
$\frac{1}{\mathrm{n}^{2}}=\frac{1}{9}-0.083$
$\frac{1}{n^{2}}=0.11-0.083$
$n^{2}=35.93$
$\mathrm{n}=6$ Ans.
Q. 31 (A)
$\frac{1}{\lambda}=109700\left(\frac{1}{4}-\frac{1}{16}\right) \times 1^{2}$
$\frac{1}{\lambda}=109700 \times \frac{3}{16}$
$\frac{1}{\lambda}=20568.75$
$\lambda=4.861 \times 10^{-5} \mathrm{~cm}$ $=4863 \AA$ Ans.
Q. 32 (B)

$$
\begin{aligned}
& \frac{1}{\lambda}=\mathrm{R}_{\mathrm{H}} Z^{2}\left(\frac{1}{\mathrm{n}_{1}^{2}}-\frac{1}{\mathrm{n}_{2}^{2}}\right) \\
& \lambda_{1}-\lambda_{2}=\frac{1}{\mathrm{R}_{\mathrm{H}} Z^{2}\left(\frac{1}{4}-\frac{1}{9}\right)}-\frac{1}{R_{H} Z^{2}\left(\frac{1}{1}-\frac{1}{4}\right)}
\end{aligned}
$$

$10^{-9} \times 133.7=\frac{1}{\mathrm{R}_{\mathrm{H}}} \times \frac{1}{4}\left[\frac{36}{5}-\frac{4}{3}\right]$
$10^{-9} \times 133.7=\frac{1}{R_{H}}\left[\frac{9}{5}-\frac{1}{3}\right]$
$10^{-9} \times 133.7=\frac{1}{\mathrm{R}_{\mathrm{H}}}\left[\frac{22}{15}\right]$
$\frac{1}{\mathrm{R}_{\mathrm{H}}}=\frac{133.7 \times 15 \times 10^{-9}}{22}$
$\Rightarrow \mathrm{R}_{\mathrm{H}}=0.01096 \times 10^{+9}$
$=1.096 \times 10^{7} \mathrm{~m}^{-1}$
Q. 33 (D)

$$
\begin{aligned}
& \frac{1}{\lambda}=109700 \times 4\left[\frac{1}{4}-\frac{1}{16}\right] \\
& \frac{1}{\lambda}=109700 \times\left[\frac{1}{1}-\frac{1}{4}\right] \\
& \frac{1}{\lambda}=109700 \times \frac{3}{4}
\end{aligned}
$$

$\lambda=1.21 \times 10^{-5}$
For Hydrogen

$$
\begin{aligned}
& 109700 \times \frac{3}{4}=109700 \times 1\left[1-\frac{1}{\mathrm{n}^{2}}\right] \\
& \frac{1}{\mathrm{n}^{2}}=1-\frac{3}{4} \\
& \mathrm{n}=2 \\
& \text { i.e., transition from } \mathrm{n}=2 \text { to } \mathrm{n}=1 \text { Ans. }
\end{aligned}
$$

Q. 34 (A)

For visible region i.e. balmer series $n_{1}=2$ and for \min energy transfer $=n_{2}=3$
$\frac{1}{\lambda}=\mathrm{R}_{\mathrm{H}}\left[\frac{1}{2^{2}}-\frac{1}{3^{2}}\right]=1.1 \times \frac{5}{30} \times 10^{7} \mathrm{~m}^{-1}$
$\lambda=6.55 \times 10^{-7} \mathrm{~m}$
$\mathrm{E}=\frac{\mathrm{hc}}{\lambda}=\frac{6.62 \times 10^{-34} \times 3 \times 10^{8}}{6.55 \times 10^{-7}}$
$=3.032 \times 10^{-19} \mathrm{~J}$
For 1 gm atom
Total energy $=\mathrm{E} \times \mathrm{N}_{\mathrm{A}}$
$=3.032 \times 10^{-19} \times 6.022 \times 10^{23}$
$=18.25 \times 10^{4} \mathrm{~J}$
$=182.5 \times 1 \mathrm{KJ}$
$=1.825 \times 10^{5} \mathrm{~J} / \mathrm{mol}$ Ans.
Q. 35 (B)

$$
\frac{1}{\lambda}=109700 \times 9\left(\frac{1}{1}-\frac{1}{9}\right)
$$

$\lambda=\frac{1}{109700 \times 8}$
$=1.139 \times 10^{-6} \mathrm{~cm}^{-1}$
$=1.139 \times 10^{-8} \mathrm{~m}^{-1}$
113.9 A Ans.
Q. 36 (D)
$\frac{1}{\lambda}=109677 \times 4\left(\frac{1}{1}-\frac{1}{4}\right)$
$\lambda=\frac{1}{109677 \times 3}$
$=3.03 \times 10^{-6} \mathrm{~cm}$
$=30.3 \mathrm{~nm}$
$\mathrm{E}=\frac{1240}{30.3}=40.92 \mathrm{eV}$
\therefore K. E. $=40.92 \mathrm{eV}$
$=40.92 \times 1.6 \times 10^{-19} \mathrm{~J}$
K. $\mathrm{E} .=\frac{1}{2} \mathrm{mv}^{2}$
$\mathrm{v}^{2}=\frac{2 \times 40.92 \times 1.6 \times 10^{-19} \times 10^{31}}{9.1}$
$v^{2}=14.38 \times 10^{+12}$
$\mathrm{v}=\sqrt{14.38 \times 10^{12}}$
$=3.79 \times 10^{6} \mathrm{~m} / \mathrm{s}$
$=3.8 \times 10^{6} \mathrm{~m} / \mathrm{s}$
$=3.8 \times 10^{8} \mathrm{~cm} / \mathrm{sec}$ Ans.
Q. 37 (A)
$v=\operatorname{RCZ} Z^{2}\left(\frac{1}{\mathrm{n}_{1}^{2}}-\frac{1}{\mathrm{n}_{2}^{2}}\right)$.
$v_{1}=R C Z^{2}\left(\frac{1}{1^{2}}-\frac{1}{\infty^{2}}\right)=R C Z^{2}, v_{2}=R C Z^{2}$
$\left(\frac{1}{1^{2}}-\frac{1}{2^{2}}\right)=\frac{3}{4} R C Z^{2}$.
$v_{3}=R C Z^{2}\left(\frac{1}{2^{2}}-\frac{1}{\infty^{2}}\right)=\frac{1}{4} R C Z^{2} . \therefore v_{1}-v_{2}=v_{3}$.
Q. 38 (B)

Shortest wave length of Lyman series of H -atom

$$
\frac{1}{\lambda}=\frac{1}{x}=R\left[\frac{1}{(1)^{2}}-\frac{1}{(\infty)^{2}}\right]
$$

so, $x=\frac{1}{R}$

For Balmes series

$$
\begin{aligned}
\frac{1}{\lambda} & =\mathrm{R}(1)^{2}\left\{\frac{1}{(2)^{2}}-\frac{1}{(3)^{2}}\right\} \\
\frac{1}{\lambda} & =\frac{1}{\mathrm{x}} \times \frac{5}{36} \\
\text { so, } \lambda & =\frac{36 \mathrm{x}}{5} .
\end{aligned}
$$

Q. 39 (C)

Change is angular momentum $=\frac{\Delta \mathrm{nh}}{2 \pi}$
$=(5-2) \frac{h}{2 \pi}=\frac{3 h}{2 \pi}$.

Q. 40 (C)

Let quantum no. be ' n '
2.7451×10^{4}
$=R_{H} \times 4\left[\frac{1}{n^{2}}-\frac{1}{\infty}\right]-R_{H} \times 4\left[\frac{1}{n^{2}}-\frac{1}{(n+1)^{2}}\right]$
$=27451=4 R_{H}\left[\frac{1}{n^{2}}-0-\frac{1}{n^{2}}+\frac{1}{(n+1)^{2}}\right]$
$\frac{1}{(n+1)^{2}}=\frac{27451}{4 \times 109677}$
$(\mathrm{n}+1)^{2}=15.98=16$
$\therefore \mathrm{n}=3$
$\frac{1}{\lambda}=\mathrm{R}_{\mathrm{H}}(\mathrm{z})^{2}\left\{\frac{1}{3^{2}}-\frac{1}{4^{2}}\right\}$
$\frac{1}{\lambda}=109677 \times 4 \times \frac{7}{36 \times 4}$
$\lambda=4.689 \times 10^{-5} \mathrm{~cm}^{-1}$
$=4689 \AA$ Ans.
Q. 41 (C)
$\Delta \mathrm{x}=2 \Delta \mathrm{p}$
$\Delta \mathrm{x} \cdot \Delta \mathrm{p}=\frac{\hbar}{2}=\frac{\mathrm{h}}{4 \pi} \Rightarrow 2 \Delta \mathrm{p} \cdot \Delta \mathrm{p}=\frac{\hbar}{2}$
$\Rightarrow 2(\mathrm{~m} \Delta \mathrm{~V})^{2}=\frac{\hbar}{2} ;(\Delta \mathrm{V})^{2}=\frac{\hbar}{4 \mathrm{~m}^{2}} \Rightarrow \Delta \mathrm{~V}=\frac{\sqrt{\hbar}}{2 \mathrm{~m}}$.
Q. 42 (D)
$\lambda=v$
then $\lambda=\frac{\mathrm{h}}{\mathrm{mV}}$ or $\lambda^{2}=\frac{\mathrm{h}}{\mathrm{m}} \quad$ So, $\lambda=\sqrt{\frac{\mathrm{h}}{\mathrm{m}}}$.
Q. 43 (D)
$2 \pi \mathrm{r}=\mathrm{n} \lambda=$ circumference
Q. 44 (B)
$\frac{\lambda_{\mathrm{y}}}{\lambda_{\mathrm{x}}}=\frac{\mathrm{m}_{\mathrm{x}} \mathrm{v}_{\mathrm{x}}}{\mathrm{m}_{\mathrm{y}} \mathrm{v}_{\mathrm{y}}} \Rightarrow \frac{\lambda_{\mathrm{y}}}{1}=\frac{\mathrm{m}_{\mathrm{x}} \mathrm{v}_{\mathrm{x}}}{\left(0.25 \mathrm{~m}_{\mathrm{x}}\right)\left(0.75 \mathrm{v}_{\mathrm{x}}\right)}=\frac{16}{3}$.
$\therefore \lambda_{\mathrm{y}}=5.33 \AA$.
Q. 45 (B)

For an electron accelerated with potential difference
V volt, $\lambda=\frac{\mathrm{h}}{\sqrt{2 \mathrm{mqV}}}=\frac{12.3}{\sqrt{\mathrm{~V}}} \AA$.

Q. 46 (B)

$\lambda_{\text {debrogli }}=\frac{6.64 \times 10^{-34}}{\mathrm{mv}}$
$V=\frac{6.64 \times 10^{-34}}{500 \times 10^{-10} \times 9.1 \times 10^{-31}}=1.45 \times 10^{4} \mathrm{~m} / \mathrm{sec}$
$1 / 2 \mathrm{mv}^{2}=\mathrm{eV}_{0}$
$\frac{\frac{1}{2} \times 9.1 \times 10^{-31} \times 1.45 \times 10^{8} \times 1.45}{1.6 \times 10^{-19}}=V_{0}$
$\mathrm{V}_{0}=5.97 \times 10^{-4}$ Volts Ans.
Q. 47 (D)

Velocity of proton

$$
=\frac{1}{10} \times 3 \times 10^{8}
$$

$=3 \times 10^{7} \mathrm{~m} / \mathrm{sec}$
$\Delta \mathrm{V}=3 \times 10^{5} \mathrm{~m} / \mathrm{sec}$
$\Delta \mathrm{V} . \Delta \mathrm{x}=\frac{\mathrm{h}}{4 \pi \mathrm{~m}}$
$\Delta x=\frac{6.62 \times 10^{-34}}{4 \times 3.14 \times 9.1 \times 10^{-31} \times 3 \times 10^{5} \times 1840}=$
$\frac{6.62 \times 10^{-8}}{4 \times 3.14 \times 9.1 \times 1840}$
$\Rightarrow 1.05 \times 10^{-13} \mathrm{~m} \quad$ Ans.
Q. 48 (C)
$10^{-10}=\frac{6.62 \times 10^{-34}}{\mathrm{~m}}$
$V=\frac{6.62 \times 10^{-34}}{1840 \times 9.1 \times 10^{-31} \times 10^{-10}}=3.95 \times 10^{3} \mathrm{~m} / \mathrm{sec}$
$\frac{1}{2} m v^{2}=e V_{0}$

$$
\begin{aligned}
& \frac{\frac{1}{2} \times 1840 \times 9.1 \times 10^{-31} \times 3.95 \times 3.95 \times 10^{6}}{1.6 \times 10^{-19}}=V_{0} \\
& V_{0}=81640.08 \times 10^{-6} \mathrm{~V} \\
& \quad=0.0816 \text { Volts Ans. }
\end{aligned}
$$

Q. 49 (D)

$$
\begin{aligned}
& \frac{\mathrm{hc}}{\lambda}=\mathrm{E}_{1}-\mathrm{E}_{2}=\mathrm{KE}_{2}-\mathrm{KE}_{1} \\
& \therefore \lambda=\frac{\mathrm{h}}{\mathrm{mV}}(\mathrm{mV})^{2}=\left(\frac{\mathrm{h}}{\lambda}\right)^{2} ; \frac{1}{2} \mathrm{mV}^{2}=\frac{1}{2 \mathrm{~m}} \frac{\mathrm{~h}^{2}}{\lambda^{2}} \\
& \therefore \frac{\mathrm{hc}}{\lambda}=\frac{\mathrm{h}^{2}}{2 \mathrm{~m} \lambda_{2}^{2}}-\frac{\mathrm{h}^{2}}{2 \mathrm{~m} \lambda_{1}^{2}} . \therefore \lambda=\frac{2 \mathrm{mc}}{\mathrm{~h}} \\
& \left\{\frac{\lambda_{1}^{2} \lambda_{2}^{2}}{\lambda_{1}^{2}-\lambda_{2}^{2}}\right\} .
\end{aligned}
$$

Q. 50 (A)

$$
\frac{\lambda_{p}}{\lambda_{\alpha}}=\sqrt{\frac{m_{\alpha} K E_{\alpha}}{m_{p} K E_{p}}}=\sqrt{\frac{4 m_{p} \times 325}{m_{p} \times 50}}=\sqrt{26} \approx 5
$$

Q. 51 (A)
$\lambda_{\text {debroglie }}=\frac{\mathrm{hc}}{\mathrm{mv}}$
$=\frac{6.62 \times 10^{-34}}{6 \times 10^{24} \times 3 \times 10^{6}}=0.368 \times 10^{-64} \mathrm{~m}=3.68 \times^{-65} \mathrm{~m}$
Ans.
Q. 52 (D)
$\Delta \mathrm{V}=(100-99.99 \%)$ of 40
$=\frac{0.01}{100} \times 40$
$\Delta x . \Delta V=\frac{h}{4 \pi \mathrm{~m}}$
$\Delta \mathrm{x}=\frac{6.62 \times 10^{-34}}{4 \times 3.14 \times 4 \times 10^{-3} \times 9.1 \times 10^{-31}}$
$=\frac{0.132 \times 10^{-31}}{9.1 \times 10^{-31}} \mathrm{~m}$
$=0.0145 \mathrm{~m}$ Ans.
Q. 53 (B)
$\mathrm{KE}=-\mathrm{TE}$
$\Rightarrow \mathrm{KE}=-(-3.4)$
$\Rightarrow \mathrm{KE}=+3.4 \mathrm{eV}$
\& for e^{-}

$$
\begin{aligned}
& \lambda_{\AA}=\sqrt{\frac{150}{\mathrm{KE}}}, \lambda_{\AA}=\sqrt{\frac{150}{3.4}} \\
& \lambda_{\AA}=6.6 \AA \\
& \lambda=6.6 \times 10^{-10} \mathrm{~m}
\end{aligned}
$$

Q. 54 (A)

orbital is spherical so non-directional.
Q. 55 (C)

The lobes of $d_{x y}$ orbital are at an angle of 45° with X and Y axis. So along the lobes, angular probability distribution is maximum.
Q. 56 (A)
$I:$ For $n=5,1_{\text {min }}=0 . \quad \therefore \quad$ Orbital angular momentum $=\sqrt{\ell(\ell+1)} \hbar=0$. (False)
II : Outermost electronic configuration $=3 \mathrm{~s}^{1}$ or $3 \mathrm{~s}^{2}$. \therefore possible atomic number $=11$ or 12 (False).
III : $\mathrm{Mn}_{25}=[\mathrm{Ar}] 3 \mathrm{~d}^{5} 4 \mathrm{~s}^{2} . \quad \therefore 5$ unpaired electrons.
\therefore Total spin $= \pm \frac{5}{2}$ (False).
IV : Inert gases have no unpaired electrons.
\therefore spin magnetic moment $=0$ (True).
Q. 57 (C)

The lobes of $d_{x^{2}-y^{2}}$ orbital are alligned along X and Y axis. Therefore the probability of finding the electron is maximum along x and y -axis.
Q. 58 (C)
$\Psi_{(\mathrm{x})}=\mathrm{K}_{1} \cdot \mathrm{e}^{-\mathrm{r} / \mathrm{K}_{2}}\left(\mathrm{r}^{2}-5 \mathrm{~K}_{3} \mathrm{r}+6 \mathrm{~K}_{3}{ }^{2}\right)$
\therefore is quadratic in ' r ' and is a $f(\sigma)$
\therefore it certainly represents
$3 \rightarrow$ sheell
$\mathrm{s} \rightarrow$ subshell
$\mathrm{A} \rightarrow \mathrm{n}=3$
$\mathrm{B} \rightarrow$ ang. nodes $=0$
$\mathrm{C} \rightarrow l=0$
$\mathrm{D} \rightarrow(\mathrm{n}+5) \mathrm{s} \rightarrow 8 \mathrm{~S} \rightarrow 8$
$(\mathrm{n}+5) \mathrm{p} \rightarrow 8 \mathrm{P} \rightarrow 9$
i.e., $6 \mathrm{f}, 2 \mathrm{~d}, 5 \mathrm{~g}$
$\mathrm{E} \rightarrow 0$ i.e., $\frac{\mathrm{h}}{2 \pi} \sqrt{\ell(\ell+1)}$
$\mathrm{F} \rightarrow \Psi_{\mathrm{r}}=\mathrm{K}_{1} \mathrm{e}^{-\mathrm{r} / \mathrm{K}_{2}}\left(\mathrm{r}^{2}-5 \mathrm{r}+6\right)$
$=\frac{1}{9 \sqrt{3} \cdot a_{0}^{3 / 2}}\left(6-5 \sigma+\sigma^{2}\right) \cdot e^{-\sigma / 2}$
solving is quadratic
$\sigma^{2}-5 \sigma+6=0$
$\sigma^{2}-2 \sigma-3 \sigma+6=0$
$\sigma(\sigma-2)-3(\sigma-2)=0$
$\sigma=3$, 2
code is $=300303$ Ans.
Q. 59 (D)

Total number of electrons in an orbital $=2(2 \ell+1)$.
The value of ℓ varies from 0 to $\mathrm{n}-1$.
\therefore Total numbers of electrons in any orbit
$=\sum_{\ell=0}^{\ell=n-1} 2(2 \ell+1)$.
Q. 60 (D)

Spin quantum number does not comes from Schrodinger equation.
$s=+\frac{1}{2}$ and $-\frac{1}{2}$ have been assigned arbitrarily.
Q. 61 (A)

After $n p$ orbital, $(n+1) s$ orbital is filled.
Q. 62 (B)

Magnetic moment $=2.83$ so, no. of unpaired electrons $=2$
so, Ni^{2+} is the answer.
Q. 63 (A)
$\mathrm{Cr}: 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6} 4 \mathrm{~s}^{1} 3 \mathrm{~d}^{5}$

$$
\mathrm{n}+\ell=3
$$

so the combinations are $2 \mathrm{p}, 3 \mathrm{~s}$. So 8 electrons.

JEE-ADVANCED

MCQ/COMPREHENSION/COLUMN MATCHING
Q. 1 (B,D)
$v=\frac{c}{\lambda}=\frac{3 \times 10^{8}}{600 \times 10^{-9}}=5 \times 10^{14} \mathrm{sec}^{-1}$
$\mathrm{E}=\frac{12400}{6000}=2.07 \mathrm{eV}$.
Q. $2(\mathrm{~A}, \mathrm{C})$
Q. 3 (A,C)

Ground state binding energy $=13.6 \mathrm{Z}^{2}=122.4 \mathrm{eV}$.
$\therefore \quad \mathrm{Z}=3$.
$1^{\text {st }}$ excitation energy $=10.2 \mathrm{Z}^{2}=91.8 \mathrm{eV}$.
$\therefore \quad$ an 80 eV electron cannot excite it to a higher state.
Q. 4 (A,C)
Q. 5 (B,C,D)
$\mathrm{V} \alpha \frac{\mathrm{z}}{\mathrm{n}} \quad \therefore \mathrm{V} \alpha \frac{1}{\mathrm{n}}$
$r \alpha \frac{n^{2}}{z}$
$\therefore \mathrm{r} \alpha \mathrm{n}^{2}$
P. E. $\alpha-\frac{1}{r}$
K.E. $\alpha \frac{1}{r}$

Q. 6 (C,D)
$v \propto \frac{1}{\lambda}$
Q. 7 (A,B,D)

Velocity $\propto \frac{Z}{n} ; \quad$ Frequency $\propto \frac{Z^{2}}{n^{3}} ;$
Radius $\propto \frac{\mathrm{n}^{2}}{\mathrm{Z}} ; \quad \quad$ Force $\propto \frac{\mathrm{Z}^{2}}{\mathrm{n}^{4}}$.
Q. 8 (A,C,D)

Binding energy of ground state means energy required to more e^{-}from $\mathrm{n}=1$ to $\mathrm{n}=\infty$.
$\Delta \mathrm{E}_{\text {binding energy }}=\quad \Delta \mathrm{E}_{\mathrm{n}=1 \text { to } \mathrm{n}=\infty} \times \mathrm{Z}^{2}$
$\Rightarrow 122.4=13.6 \times Z^{2}$
$\Rightarrow Z^{2}=9$
$\Rightarrow Z=3$
(C) Minimum energy required to excite e^{-}from $\mathrm{n}=$ 1 to $\mathrm{n}=2$.

$\mathrm{E}=10.2 \times \mathrm{Z}^{2}$
$\mathrm{E}=10.2 \times 3^{2}$
$\mathrm{E}=91.8 \mathrm{eV}$
(D) $\mathrm{E}_{\text {gained }}-$ I.E. $=\mathrm{kEe}^{-}$
$\mathrm{kEe}^{-}=2.6 \mathrm{eV}$
Q. 9 (A, D)
$\frac{T_{1}}{T_{2}}=\frac{n_{1}^{3} / Z^{2}}{n_{2}^{3} / Z_{2}^{2}}, \frac{T_{1}}{T_{2}}=\frac{n_{1}^{3}}{n_{2}^{3}}$
$\frac{8 \mathrm{~T}_{1}}{\mathrm{~T}_{2}}=\frac{\mathrm{n}_{1}^{3}}{\mathrm{n}_{2}^{3}} \Rightarrow \frac{\mathrm{n}_{1}}{\mathrm{n}_{2}}=2$
(A) $\frac{\mathrm{n}_{1}}{\mathrm{n}_{2}}=\frac{4}{2}=2$
for photons
(B) $\frac{\mathrm{n}_{1}}{\mathrm{n}_{2}}=\frac{8}{2}=4$
(C) $\frac{\mathrm{n}_{1}}{\mathrm{n}_{2}}=\frac{8}{1}=8$
(D) $\frac{\mathrm{n}_{1}}{\mathrm{n}_{2}}=\frac{6}{3}=2$
\therefore (A) \& (D) are correct

Q. 10 (A,C)

Max. number of different photons emitted is 4 [$4 \rightarrow$
$3 \rightarrow 1$ and $4 \rightarrow 2 \rightarrow 1)$ or $(4 \rightarrow 3 \rightarrow 2 \rightarrow 1$ and $4 \rightarrow$ 1)].

Minimum number of different photons emitted is 1 (4 $\rightarrow 1$ and $4 \rightarrow 1$).
Q. 11 (A,B,C)
$\lambda=\frac{\mathrm{h}}{\mathrm{mv}}=\frac{\mathrm{h}}{\sqrt{2 \mathrm{mKE}}}=\frac{\mathrm{h}}{\sqrt{2 \mathrm{mqV}}}$.
When v, KE and V are same, as m increasing, λ decreases. $\lambda_{\mathrm{e}}>\lambda_{\mathrm{p}}>\lambda_{\alpha}$ (if v, KE and V are same).
Q. 12 (A,B,C)
Q. 13 (B,C)

If intensity or no. of photons falling per unit area is increased then photocurrent will increase in surface area also causes increases in no. of photons.
Q. 14 (C, D)

$\frac{1 / \lambda_{1}}{1 / \lambda_{2}}=\frac{R_{H} \times 1^{2}\left[\frac{1}{2^{2}}-\frac{1}{3^{2}}\right]}{R_{H} \times 1^{2}\left[\frac{1}{1^{2}}-\frac{1}{2^{2}}\right]}$
$\frac{\lambda_{2}}{\lambda_{1}}=\frac{1}{x}=\frac{5}{27}$
$x=\frac{27}{5}$
As, $\lambda=\frac{\mathrm{h}}{\mathrm{me}}$
$\therefore \frac{(\mathrm{mc})_{1}}{(\mathrm{mc})_{2}}=\frac{\mathrm{h} / \lambda_{1}}{\mathrm{~h} / \lambda_{2}}$
$\frac{\lambda_{2}}{\lambda_{1}}=\frac{5}{27}=y$
$\frac{\mathrm{E}_{1}}{\mathrm{E}_{2}}=\frac{\mathrm{hc} / \lambda_{1}}{\mathrm{hc} / \lambda_{2}}=\frac{\lambda_{2}}{\lambda_{1}}=\mathrm{z}=\frac{5}{27}$

Q. 15 (C, D)

Q. 16 (B,C)

Peaks $=1+1=2$
Q. 17 (A,B,C)
$\mathrm{n}=4, \mathrm{~m}=2$
Value of $\ell=0$ to $(\mathrm{n}-1)$ but $\mathrm{m}=2 . \therefore \ell=2$ or 3 only Value of s may be $+1 / 2$ or $-1 / 2$.
Q. 18 (A,B,C)
(A) ${ }_{24} \mathrm{Cr}:[\mathrm{Ar}] 3 \mathrm{~d}^{5} 4 \mathrm{~s}^{1}$
(B) $\mathrm{m}=-\ell$ to $+\ell$ through zero.
(C) ${ }_{47} \mathrm{Ag}: 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6} 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{10} 4 \mathrm{p}^{6} 5 \mathrm{~s}^{1} 4 \mathrm{~d}^{10}$.

Since only one unpaired electron is present.
$\therefore 23$ electrons have spin of one type and 24 of the opposite type.

Comprehension \# 01 (Q. No. 19 \& 21)

Q. 19 (B)

As the frequency of incident radiations increases, the kinetic energy of emitted photoelectrons increases. Decreasing order of $v \Rightarrow$ Violet $>$ Blue $>$ Orange $>$ Red
\therefore Decreasing order of KE of photoelectrons \Rightarrow Violet $>$ Blue $>$ Orange $>$ Red
Q. 20 (C)

The interaction between photon and electron is always one to one for ejection of photoelectrons,
Frequency of incident radiations > threshold frequency
$\therefore 5.16 \times 10^{15}>6.15 \times 10^{14}$
Q. 21 (A)

The number of photoelectrons emitted depend on the intensity or brightness of incident radiation.

Comprehension \# 02 (Q. No. $22 \& 25$)

Q. 22 (D)

$$
\begin{aligned}
& \Delta \mathrm{E}=1.89 \times \mathrm{Z}^{2} \\
& \Rightarrow 47.2=1.89 \times Z^{2} \\
& \Rightarrow Z^{2}=25 \\
& Z=5
\end{aligned}
$$

Q. 23 (C)

$$
\Delta \mathrm{E}=13.6 \times \mathrm{Z}^{2}\left[\frac{1}{\mathrm{n}_{1}^{2}}-\frac{1}{\mathrm{n}_{2}^{2}}\right]
$$

$$
=13.6 \times 5^{2}\left[\frac{1}{3^{2}}-\frac{1}{4^{2}}\right] \mathrm{eV}
$$

$$
=26.5 \times 10^{-12} \mathrm{erg}
$$

Q. 24 (A)

$$
\begin{aligned}
& \lambda=\frac{12400}{E} \AA \\
& =\frac{12400}{13.6 \times 5^{2}} \AA \\
& =36.5 \AA
\end{aligned}
$$

Q. 25 (C)
$\mathrm{KE}=-\mathrm{TE}$
$=-\left(-13.6 \times \frac{z^{2}}{n^{2}}\right) e V$
$=+13.6 \times \frac{5^{2}}{1^{2}} \times 1.6 \times 10^{-19} \mathrm{~J}$
$=544 \times 10^{-19} \times 10^{7} \mathrm{erg}$
$=5.5 \times 10^{-10} \mathrm{erg}$
Comprehension \# 03 (Q. No. 26 \& 28)
Q. 26 (A)

Last line of Bracket series for H -atom

$$
\frac{1}{\lambda_{1}}=\mathrm{R}\left[\frac{1}{(4)^{2}}-\frac{1}{(\infty)^{2}}\right]
$$

$$
\text { so, } \lambda_{1}=\frac{16}{R}
$$

$2^{\text {nd }}$ line of Lyman series

$$
\begin{aligned}
\frac{1}{\lambda_{2}} & =\mathrm{R}\left[\frac{1}{(1)^{2}}-\frac{1}{(3)^{2}}\right] \\
\text { or, } \quad \frac{128}{\lambda_{1}} & =\frac{9}{\lambda_{2}}
\end{aligned}
$$

Q. 27 (D)

1. Spectral lines of H atom only belonging to Balmer series are in visible range.
2. In the Balmer series of H -atom, first 4 lines are in visible region and rest all are in ultra violet region.
3. $2^{\text {nd }}$ line of Lyman series of He^{+}ion has energy $=$ $\left(\mathrm{E}_{3 \rightarrow 1}\right) \times 2^{2}=12.1 \times 4=48.4 \mathrm{eV}$.
Q. 28 (C)
$\overline{\mathrm{v}}=\mathrm{R}(4)^{2}\left[\frac{1}{(3)^{2}}-\frac{1}{(4)^{2}}\right]=\frac{7 \mathrm{R}}{9}$.

Comprehension \# 04 (Q. No. 29 \& 32)

Q. 29 (A)
$\frac{1}{\lambda}=109677 \times 1\left\{1-\frac{1}{9}\right\}$
$\frac{1}{\lambda}=109677 \times \frac{8}{9}$
$\lambda=1.025 \times 10^{-5} \mathrm{~cm}$
$=1.025 \times 10^{-7} \mathrm{~m}$
$\mathrm{E}=\frac{6 \times 10^{-34} \times 3 \times 10^{8} \times 10^{7}}{1.025}$
$=1.76 \times 10^{-18} \mathrm{~J}$
Q. 30 (C)

Q. 31 The difference in the wavelength of the $1^{\text {st }}$ line of Lyman series and 2nd line of Balmer series in a hydrogen atom is :
(B)
$\frac{1}{\lambda_{1}}=\mathrm{R}_{\mathrm{H}}\left\{1-\frac{1}{4}\right\}$
$\lambda_{1}=\frac{4}{3 R_{H}}$
$\frac{1}{\lambda_{2}}=\mathrm{R}_{\mathrm{H}}\left\{\frac{1}{4}-\frac{1}{10}\right\}$
$\lambda_{2}=\frac{16}{3 R_{H}}$
$\lambda_{2}-\lambda_{1}=\frac{16}{3 R_{\mathrm{H}}}-\frac{4}{3 R_{\mathrm{H}}}$

$$
=\frac{12}{3 R_{H}}=\frac{4}{R_{H}}
$$

Q. 32 (C)
$\mathrm{n}_{1}+\mathrm{n}_{2}=4$
$\mathrm{n}_{1}-\mathrm{n}_{2}=2$
$\mathrm{n}_{1}=3$
$\mathrm{n}_{2}=1$
$\bar{v}=\mathrm{R}_{\mathrm{H}} \times 9\left\{1-\frac{1}{9}\right\}$
$=8 \mathrm{R}_{\mathrm{H}}$

Comprehension \# 05 (Q. No. 33 \& 35)

Q. 33 (D)
$\Delta \mathrm{x}=\frac{\mathrm{h}}{4 \pi \mathrm{Me}} \times \frac{1}{\Delta \mathrm{~V}} \quad \Delta \mathrm{~V}=\mathrm{V}, \frac{0.001}{100}=300 \times 10^{-5}$
m/s
$\Delta \mathrm{x}=5.8 \times 10^{-5} \times \frac{1}{300 \times 10^{-5}}=1.92 \times 10^{-2} \mathrm{~m}$

Q. 34 (D)

The maximum KE of potoelectron is corresponding to maximum stopping $=22 \mathrm{eV}$

$$
\begin{aligned}
& \therefore \mathrm{E}_{\text {incident }}=\mathrm{E}_{\text {thresold }}+\mathrm{KE}_{\text {maxi }}=40 \mathrm{eV}+22 \mathrm{eV}=62 \mathrm{eV} \\
& \lambda_{\text {incident }}=\frac{12400 \AA}{62}=200 \AA
\end{aligned}
$$

Q. 35 (C)

Circumference $=2 \pi r=n \lambda$
de-broglie $-\lambda=\frac{2 \pi r}{n}=\frac{3 n \mathrm{~m}}{3}=1 \mathrm{~nm}=10 \AA$
$\therefore \lambda=\frac{12.3}{\sqrt{V}} \AA$
\therefore KE of electron in third orbit $=1.51 \mathrm{eV} \equiv$ binding energy of third orbit in this atom
$\lambda=$ of photon required to ionise $=\frac{1240 \mathrm{eV} \AA}{1.51 \mathrm{eV}}=821$ nm

Comprehension \# 06 (Q. No. 36 \& 38)

Q. 36 (A)

Mass $\uparrow \lambda_{\text {debrogli }} \downarrow$
Q. 37 (C)
$\lambda_{\text {debrogli }}=\frac{\mathrm{h}}{\mathrm{mv}} \rightarrow$ costant
$\lambda \alpha \frac{1}{v}$
and $\mathrm{v} \alpha \frac{\mathrm{z}}{\mathrm{n}} \rightarrow$ costant
$\therefore \mathrm{v} \alpha \frac{1}{\mathrm{n}}$
i.e. transition from
$\mathrm{n}=1$ to $\mathrm{n}=3, \mathrm{n}=2$ to $\mathrm{n}=6$
$\mathrm{n}=3$ to $\mathrm{n}=9$
Q. 38 (A)
$\Delta x, \Delta \mathrm{mv}=\frac{\mathrm{h}}{4 \pi}$
$\Delta \mathrm{V}, \Delta \mathrm{mv}=\frac{\mathrm{h}}{4 \pi}$
multiplying by $m(\Delta \mathrm{mv})^{2}=\frac{\mathrm{hm}}{4 \pi}$

Comprehension \# 07 (Q. No. 39 \& 41)

Q. 39 (C)

Two unpaired electrons present in carbon atom are in different orbitals. So they have different magnetic quantum number.
Q. 40 (B)

Electronic configuration of Zn^{2+} ion is $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2}$ $3 \mathrm{p}^{6} 3 \mathrm{~d}^{10}$ so no electron in 4 s orbitals.
Q. 41 (B)
$\sqrt{s(s+1)} \frac{\mathrm{h}}{2 \pi}=\sqrt{\frac{1}{2}\left(\frac{1}{2}+1\right)} \frac{\mathrm{h}}{2 \pi}=\frac{\sqrt{3}}{2} \frac{\mathrm{~h}}{2 \pi}=$
$0.866 \frac{\mathrm{~h}}{2 \pi}$
Q. 42 (A) -u ; (B) -s ; (C) -p ; (D) -t ; (E) -q ; (F) -r It is factual.
Q. 43
(A) $-\mathrm{b},(\mathrm{B})-\mathrm{a},(\mathrm{C})-\mathrm{b}, \mathrm{c}$, (D) $-\mathrm{c}, \mathrm{d}$.
$\mathrm{f}_{\mathrm{n}}=\frac{\mathrm{v}_{\mathrm{n}}}{2 \pi \mathrm{r}_{\mathrm{n}}}, \mathrm{f}_{\mathrm{n}} \propto \frac{\mathrm{z}^{2}}{\mathrm{n}^{3}}, \quad \mathrm{~T}_{\mathrm{n}}=\frac{2 \pi \mathrm{r}_{\mathrm{n}}}{\mathrm{v}_{\mathrm{n}}}, \mathrm{T}_{\mathrm{n}} \propto \frac{\mathrm{n}^{3}}{\mathrm{z}^{2}}$.
$E_{n}=-13.6 \frac{z^{2}}{n^{2}}, E_{n} \propto \frac{z^{2}}{n^{2}}, r_{n} \propto \frac{n^{2}}{z}$.
Q. 44 (A) s, (B) r, (C) q, (D) p
$\mathrm{A} \rightarrow \lambda_{\text {debroglie }}=\sqrt{\frac{150}{13.6}}(\mathrm{~S})$

$$
\begin{aligned}
& B \rightarrow \text { Vel. }=2.18 \times 10^{6} \times \frac{z}{n}(R)=\frac{2.18 \times 10^{6}}{3} \mathrm{~m} / \mathrm{s} \\
& C \rightarrow \text { Energy }=-13.6 \times \frac{z^{2}}{n^{2}}=-13.6 \times 9 \\
& D \rightarrow r=-0.529 \times \frac{n^{2}}{z} \\
& P=0.529 \AA \\
& \text { Q. } 45 \quad(A)-c,(B)-d,(C)-a,(D)-b .
\end{aligned}
$$

i : For Lyman series, \bar{v} for second line $(3 \rightarrow 1)=$ $R(1)^{2}\left[\frac{1}{1^{2}}-\frac{1}{3^{2}}\right]=\frac{8 R}{9}$ (c).
ii : For Balmer series, \bar{v} for second line $(4 \rightarrow 2)=$ $R(1)^{2}\left[\frac{1}{2^{2}}-\frac{1}{4^{2}}\right]=\frac{3 R}{16}(d)$.
iii : In a sample of H -atom for $5 \rightarrow 2$ transition, maximum number of spectral lines observed $=$ $\frac{(5-2)(5-2+1)}{2}=6$ (a).
iv : In a single isolated H -atom for $3 \rightarrow 1$ transition, maximum number of spectral lines observed $=2(3$ $\rightarrow 2,2 \rightarrow 1$ (b).
Q. 46 (A)-p, (B)-pqs, (C)-pr, (D)-qs
$\mathrm{A} \rightarrow$ R.N. $=3$
P
$\mathrm{B} \rightarrow$ R.N. $=3 \quad \mathrm{PQR}$
D \rightarrow A.N. $=1$
QS
Q. 47 (A) $-\mathrm{s} ;(\mathrm{B})-\mathrm{s} ;(\mathrm{C})-\mathrm{u} ;(\mathrm{S})-\mathrm{q} ;(\mathrm{E})-\mathrm{p} ;(\mathrm{F})-\mathrm{r}$

It is factual.

NUMERICAL VALUE BASED

Q. 16

$$
\frac{\left(\mathrm{n}_{2}-\mathrm{n}_{1}\right)\left(\mathrm{n}_{2}-\mathrm{n}_{1}+1\right)}{2}=\frac{(5-2)(5-2+1)}{2}=6
$$

Q. $2 \quad 2$

No. of nodal axis in a px orbital are 2.
Q. 33

For hydrogen
$\frac{1}{\lambda}=R Z^{2}\left[\frac{1}{1}-\frac{1}{3^{2}}\right]$
$\frac{1}{\lambda}=\frac{8 R}{9}$
for ionic species
$\frac{1}{\lambda}=R Z^{2}\left[\frac{1}{3^{2}}-\frac{1}{9^{2}}\right]$
$\frac{1}{\lambda}=R Z^{2} \times \frac{8}{81}$
$\frac{8 R}{9}=R Z^{2} \times \frac{8}{81}$
$Z^{2}=\frac{81}{9}=9 ; \quad Z=3$
Q. 46

No. of spherical lines produced =
$\frac{\left(n_{2}-n_{1}\right)\left(n_{2}-n_{1}+1\right)}{2}=\frac{(5-2)(5-2+1)}{2}=6$
Q. $5 \quad 5$
Q. 63

No of waves = principal quantum no.
$\mathrm{n}=3$
Q. 73
λ of e- in nth Bohr's orbit $=\frac{2 \pi a_{0} n}{z}$
$\mathrm{n}=$ Bohr's orbit, $\mathrm{z}=$ atomic number, $\mathrm{a}_{0}=$ radius of $1^{\text {st }}$
Bohr's orbit of H -atom.
Q. $8 \quad 1$

Number of radial node is equal to $n-1-1$
For p-orbital $1=1$.
Q. 93

Maximum three quantum number can be same but fourth must be different.
Q. 102

One orbital can accommodate only two electrons

KVPY

PREVIOUS YEAR'S

Q. 1 (D)

n is always greater then ℓ
and $m=-\ell$.......... $0+\ell$
If $\mathrm{n}=2$, then $\ell=0,1$ and $\mathrm{m}_{\ell}=0,\{-1,0,+1\}$
Q. 2 (A)
$\Delta \mathrm{E}=13.6\left(\frac{1}{\mathrm{n}_{1}^{2}}-\frac{1}{\mathrm{n}_{2}^{2}}\right) \mathrm{eV} /$ atom $;$
$\frac{\Delta \mathrm{E}_{1 \rightarrow 3}}{\Delta \mathrm{E}_{1 \rightarrow 2}}=\frac{\frac{1}{1^{2}}-\frac{1}{3^{2}}}{\frac{1}{1^{2}}-\frac{1}{2^{2}}}=\frac{.32}{27}$
Q. 3 (B)

```
\xrightarrow { \text { Rb,K,Na,Li} } \text { I.P.L } \downarrow
```

Q. 4 (C)

$$
{ }_{19}^{40} \mathrm{~K}^{+} \quad \text { Neutrons }=21 \text {, Electron }=18,
$$

$$
21+18=39
$$

Q. $5 \quad$ (1)
Q. 6 (3)
$\mathrm{E}=\phi+\mathrm{K} . \mathrm{E}$.
$\because \mathrm{E}=\frac{\mathrm{hC}}{\lambda}=\frac{6.6 \times 10^{-34} \times 3 \times 10^{8}}{660 \times 10^{-9}}$
3×10^{-19}
$\phi=\mathrm{lev}=1.6 \times 10^{-19} \mathrm{~J}$
K.E. $3 \times 10^{-19}-1.6 \times 10^{-19}=1.4 \times 10^{-19} \mathrm{~J}$
for wave length of emitted electron

$$
\begin{aligned}
\lambda=\frac{\mathrm{h}}{\sqrt{2 \mathrm{mKE}}}= & \frac{6.6 \times 10^{-34}}{\sqrt{2 \times 9.1 \times 10^{-31} \times 1.4 \times 10^{-19}}} \\
& =\frac{6.6 \times 10^{-34}}{5 \times 10^{-25}}=1.32 \times 10^{-9} \mathrm{~meter}^{-}
\end{aligned}
$$

Q. 7 (C)
$\mathrm{r}=0.529 \times \frac{\mathrm{n}^{2}}{\mathrm{z}}$
$\mathrm{r} \alpha \frac{1}{\mathrm{Z}}$ So correct order is $\mathrm{r}_{\mathrm{H}}+>\mathrm{r}_{\mathrm{He}}{ }^{+}>\mathrm{r}_{\mathrm{Li}}^{2+}$
Q. 8 (C)
Q. 9 (B)
Q. 10 (A)

All elements have isotopes. All isotopes of carbon can form chemical compounds with oxygen-16.
Q. 11 (C)
$\mathrm{r}_{\mathrm{He} \oplus}=\mathrm{r}_{\mathrm{H}} \times \frac{\mathrm{n}^{2}}{\mathrm{Z}}$
$\mathrm{r}_{\mathrm{He}}{ }^{+}=53 \times \frac{1}{2}=26.5 \mathrm{pm}$ It is closest to 27 pm .
Q. 12 (4)
$l=4 \rightarrow \mathrm{n}$ ' g ' subshell
\therefore no of $\mathrm{e}^{-}=2(2 l+1)$
$=2(2 \times 4+1)=18 \mathrm{e}$
Q. 13 (A)
$\mathrm{C} \Rightarrow 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{2}$

\rightarrow Energy increase
Q. 14 (C)

On increasing intensity of radiation, value of photo electric current increase no. of photon incident increase
Q. 15 (D)
$4 \mathrm{~s}, 4 \mathrm{p}, 4 \mathrm{~d} \& 4 \mathrm{f}$ contains total 32 electrons.
Q. 16 [D]
no. of radial node $=\mathrm{n}-\ell-1=4-1-1=2$
no. of angular node $=\ell=1$
Q. 17 (B)

The maximum number of electrons in the $\mathrm{n}^{\text {th }}$ shell is $2 \mathrm{n}^{2}$.
Q. 18 (A)

As the atomic number increases the energy of orbitals decreases.
Q. 19 (A)

Q. 20 (A)
(i) $E=-13.6 \times \frac{\mathrm{z}^{2}}{\mathrm{n}^{2}}$ Application only for single electron species.
For $2 \mathrm{~S} \Rightarrow \mathrm{n}=2$
Order of energy $\mathrm{E}_{2 \mathrm{~s}}(\mathrm{H})>\mathrm{E}_{2 \mathrm{~s}}(\mathrm{Li})>\mathrm{E}_{2 \mathrm{~s}}(\mathrm{Na})>$ $\mathrm{E}_{2 \mathrm{~s}}(\mathrm{~K})$
(ii) Maximum number of electron which can accommodate in a principal energy shell is equal to $2 n^{2}$.
(iii) Extra stability of half -field subshell is due to to higher exchange energy.
(iv) Only two electron with opposite spin can exists in same orbital.
So correct statement -(i), (ii).
Q. 21 (B)

In the absence of external electrical or magnetic field, cathode rays travel in straight lines.

Q. 22 (D)

For multielectron species energy depends on ($\mathrm{n}+\mathrm{l}$) value.

$$
\begin{aligned}
& \mathrm{n}=5, \mathrm{l}=1, \mathrm{~m}=0, \mathrm{~s}=+\frac{1}{2} \\
& (\mathrm{n}+\mathrm{l})=6 \text { orbital is ' } 5 \mathrm{p} \text { ' }
\end{aligned}
$$

Q. 23 (B)

For single electron species $\mathrm{v}_{\mathrm{n}} \propto \frac{1}{\mathrm{n}}$

$$
\begin{aligned}
& \frac{\mathrm{v}_{2}}{\mathrm{v}_{1}}=\frac{\mathrm{n}_{1}}{\mathrm{n}_{2}}=\frac{1}{2} \\
& \mathrm{v}_{2}=\frac{1}{2} \mathrm{v}_{1}=\frac{1}{2} \mathrm{v}=\frac{\mathrm{v}}{2}=0.5 \mathrm{v}
\end{aligned}
$$

Q. 24 (C)
$\mathrm{Cu}[\mathrm{Ar}] 3 \mathrm{~d}^{10} 4 \mathrm{~s}^{1}$

$$
\begin{aligned}
& \text { 3p 3d 4s }
\end{aligned}
$$

The set of quantum numbers for the unpaired e^{-}of Cu atom is.
$\mathrm{n}=4, l=0, \mathrm{~m}=0, \mathrm{~s}=+\frac{1}{2}$
Q. 25 (C)

Work function of metal $(\phi)=2 \mathrm{eV}$
Energy of photon $(\lambda=400 \mathrm{~nm})=\frac{\mathrm{hc}}{\lambda}=3.105 \mathrm{eV}$
Energy of photon $(\lambda=800 \mathrm{~nm})=\frac{\mathrm{hc}}{\lambda}=1.5525 \mathrm{eV}$
Hence, photon with $\lambda=400 \mathrm{~nm}$ will emit photoelectrons while photon with $\lambda=800 \mathrm{~nm}$ will not emit photoelectrons.

JEE-MAINS

PREVIOUS YEAR'S

Q. 1 (1)

Orbital	Angular Node	Radial Node
5 d	2	2
4 f	3	0
3 p	1	1
2 s	0	1

Q. 2181
$\mathrm{E}=\frac{\mathrm{hc}}{\lambda}=\frac{\left(6.62 \times 10^{-34}\right)\left(3 \times 10^{8}\right)}{\left(663 \times 10^{-9}\right)} \times \frac{6.62 \times 10^{24}}{1000}$
$=\frac{6.62 \times 3 \times 6.02}{66.3} \times 1000 \frac{\mathrm{~kJ}}{\mathrm{~mole}}$
$=180.6 \mathrm{~kJ} / \mathrm{mole}$
Q. $3 \quad 1.732$
$\mathrm{Z}=29$ [Cu element]
$\mathrm{Cu} \rightarrow[\mathrm{Ar}] 4 \mathrm{~s}^{1} 3 \mathrm{~d}^{10}$
$\mathrm{Cu}^{+2} \rightarrow[\mathrm{Ar}] 3 \mathrm{~d}^{9}$

No of unpaired electron $=1$
Magnetic moment $\mu=\sqrt{\mathrm{n}(\mathrm{n}+2)}$ BM
$=\sqrt{1 \times 3} \quad \mathrm{BM}=1.732 \mathrm{BM}$
Q. 4 (2)
Q. $5 \quad 2$
$\lambda_{\mathrm{DB}} \alpha \frac{1}{\sqrt{\text { m.K.E. }}}$
$\frac{\lambda_{\mathrm{Li}^{3+}}}{\lambda_{\mathrm{P}}}=\sqrt{\frac{\mathrm{m}_{\mathrm{p}} \times \mathrm{e}_{\mathrm{p}} \mathrm{V}}{8.33 \mathrm{~m}_{\mathrm{p}} \times 3 \mathrm{e}_{\mathrm{p}} \mathrm{V}}}$
$\sqrt{\frac{1}{25}}=\frac{1}{5}=0.2=2 \times 10^{-1}$
Q. 6 (4)

$$
\begin{aligned}
& \lambda_{\mathrm{p}}=\lambda_{\alpha} \\
& \frac{\mathrm{h}}{\mathrm{~m}_{\mathrm{p}} \mathrm{v}_{\mathrm{p}}}=\frac{\mathrm{h}}{\mathrm{~m}_{\alpha} \mathrm{v}_{\alpha}}
\end{aligned}
$$

$$
\frac{\mathrm{v}_{\mathrm{p}}}{\mathrm{v}_{\alpha}}=\frac{\mathrm{m}_{\alpha}}{\mathrm{m}_{\mathrm{p}}}
$$

$$
\frac{\mathrm{v}_{\mathrm{p}}}{\mathrm{v}_{\alpha}}=\frac{4 \mathrm{~m}_{\mathrm{p}}}{\mathrm{~m}_{\mathrm{p}}}=4
$$

Ans. 4
Q. 7 (0)
$\mathrm{n}=4$ and $\mathrm{m}_{\mathrm{l}}=-3$
Hence, 1 value must be 3 .
Now, number of radial nodes $=\mathrm{n}-1-1$

$$
=4-3-1=0
$$

Q. $8 \quad$ (3)

For, $\mathrm{n}=5$
$\ell=(0,1,2,3,4)$
If $1=0, \mathrm{~m}=0$
$\mathrm{l}=1, \mathrm{~m}=\{-1,0,+1\}$
$1=2, \mathrm{~m}=\{-2,-1,0,+1,+2\}$
$1=3, m=\{-3,-2,-1,0,+1,+2,+3\}$
$1=4, \mathrm{~m}=\{-4,-3,-2,-1,0,+1,+2,+3,+4\}$
$5 \mathrm{~d}, 5 \mathrm{f}$ and 5 g subshell contain one-one orbital having $\mathrm{ml}=+2$
Q. 9 (9)

Energy incident $=\frac{h c}{\lambda}$
$=\frac{6.63 \times 10^{-34} \times 3.0 \times 10^{8}}{248 \times 10^{-9} \times 1.6 \times 10^{-19}} \mathrm{eV}$
$=\frac{6.63 \times 3 \times 100}{248 \times 1.6}$
$=0.05 \mathrm{eV} \times 100=5 \mathrm{eV}$
Now using
$\mathrm{E}=\phi+\mathrm{K} . \mathrm{E}$.
$5=3+$ K.E.
K.E. $=2 \mathrm{eV}=3.2 \times 10^{-19} \mathrm{~J}$
for debroglie wavelength $\lambda=\frac{\mathrm{h}}{\mathrm{mv}}$
$K . E=\frac{1}{2} \mathrm{mv}^{2}$
so $=\sqrt{\frac{2 \mathrm{KE}}{\mathrm{m}}}$
hence $\lambda=\frac{\mathrm{h}}{\sqrt{2 \mathrm{KE} \times \mathrm{m}}}$
$=\frac{6.63 \times 10^{-34}}{\sqrt{2 \times 3.2 \times 10^{-19} \times 9.1 \times 10^{-31}}}$
$=\frac{6.63}{7.6} \times \frac{10^{-34}}{10^{-25}}=\frac{66.3 \times 10^{-10} \mathrm{~m}}{7.6}$
$=8.72 \times 10^{-10} \mathrm{~m}$
$\approx 9 \times 10^{-10} \mathrm{~m}$
$=9 \AA$
Q. 10 (2)

Statement-I is false since Bohr's theory accounts for the stability and spectrum of single electronic species (eg : $\mathrm{He}^{+}, \mathrm{Li}^{2+}$ etc)
Statement II is true.
Q. 11 (2)
$1=0 \Rightarrow$'s' orbital
$v \square l-1=2$
$\mathrm{n}-1=2$
$\mathrm{n}=3$
Q. 12 (4)
Q. 13 (4)
Q. 14 (58)
Q. 15 (2)
Q. 16 (6)
Q. 17 [5]
Q. 18 (3)
Q. 19 (50)
Q. 20 [3155]
Q. 21 (2)

JEE-ADVANCED PREVIOUS YEAR'S

Paragraph for Question Nos. 1 to 3

Q. 1 (B)

For lower state $\left(\mathrm{S}_{1}\right)$
No. of radial node $=1=n-\ell-1$
Put $\mathrm{n}=2$ and $\ell=0\left(\right.$ as higher state S_{2} has $\left.\mathrm{n}=3\right)$
So, it would be 2 s (for S_{1} state)
Q. 2 (C)

Energy of state $S_{1}=-13.6\left(\frac{3^{2}}{2^{2}}\right) \mathrm{eV} /$ atom

$$
\begin{aligned}
& =\frac{9}{4} \text { (energy of H-atom in ground state) } \\
& =2.25 \text { (energy of } \mathrm{H} \text {-atom in ground state }) .
\end{aligned}
$$

Q. $3 \quad$ (B)

For state S_{2}
No. of radial node $=1=n-\ell-1$
....... (eq.-1)
Energy of S_{2} state $=$ energy of e^{-}in lowest state of $\mathrm{H}-$ atom

$$
\begin{aligned}
& =-13.6 \mathrm{eV} / \text { atom } \\
& =-13.6\left(\frac{3^{2}}{\mathrm{n}^{2}}\right) \mathrm{eV} / \text { atom } \\
& \mathrm{n}=3
\end{aligned}
$$

put in equation (1) $\quad \ell=1$ so, orbital $\Rightarrow 3 p$ (for S_{2} state).
Q. $5 \quad 9$

So, electrons with spin quantum number $=-\frac{1}{2}$ will be $1+3+5=9$.
Q. 6 (A)

Q. 7 (C)
$\operatorname{mv}\left(4 \mathrm{a}_{0}\right)=\frac{\mathrm{h}}{\pi}$
so, $v=\frac{h}{4 m \pi a_{0}}$
so $K E=\frac{1}{2} m v^{2}=\frac{1}{2} m \cdot \frac{h^{2}}{16 m^{2} \pi^{2} a_{0}^{2}}=\frac{h^{2}}{32 m \pi^{2} a_{0}^{2}}$
Q. 88
${ }_{29}^{63} \mathrm{Cu}+{ }_{1}^{1} \mathrm{H} \rightarrow 6{ }_{0}^{1} \mathrm{n}+{ }_{2}^{4} \alpha+2{ }_{1}^{1} \mathrm{H}+\mathrm{X}$
$64=6+4+2+\mathrm{A} \Rightarrow \mathrm{A}=52$
$29+1=30=0+2+2+z \Rightarrow z=26$
Element X should be iron in group 8.
${ }_{4} \mathrm{Be}^{9}+\mathrm{X} \longrightarrow{ }_{4} \mathrm{Be}^{8}+\mathrm{Y}$
If X is ${ }_{0} \gamma^{0}$ then Y is ${ }_{0} \mathrm{n}^{1}$
If X is ${ }_{1} \mathrm{P}^{1}$ then Y is ${ }_{1} \mathrm{D}^{2}$
Q. 106
$\mathrm{n}=4$,
$\mathrm{m}_{\ell}=1,-1$
Hence ℓ can be
$=3,2,1$
i.e. H_{f}

2 orbitals

2 orbitals
H_{p};
2 orbitals
Hence total of 6 orbitals, and we want $m_{s}=-\frac{1}{2}$, that is only one kind of spin. So, 6 electrons.
Q. 113

Energy order of orbitals of H is decided by only principle quantum number (n)
while energy order of H^{-}is decided by $(\mathrm{n}+\ell)$ rule : Electronic configuration of ' H^{-}' is $-1 \mathrm{~s}^{2}$ its Energy order is decided by $\mathrm{n}+\ell$ rule.
$\mathrm{H}^{-}=1 \mathrm{~s}^{2} 2 \mathrm{~s}^{0} 2 \mathrm{p}^{0}$
Its $2^{\text {nd }}$ excited state is $2 p$
and degenery 2 p is ' 3 '
Q. 12 (D)
Q. 13 (C)
s-orbital is non directional so wave function will be independent of $\cos \theta$.
Q. 14 (A)

For 2 s orbital no. of radial nodes $=\mathrm{n}-\ell-1=1$

Q. 15 (D)

For 1s orbital Ψ should be independent of θ, also it does not contain any radial node.
Q. $16(1,3)$
\# $-3.6=\frac{-13.6 \times 4}{n^{2}}$
$\mathrm{n}=4$
\# $\ell=2$
\# m = 0
Angular nodes $=\ell=2$
Radial nodes $=(\mathrm{n}-\ell-1)=1$
n $\ell=4 d$ state
Q. 17 (C)
$\mathrm{r}=0.529 \times \frac{\mathrm{n}^{2}}{\mathrm{z}} \Rightarrow \mathrm{r} \propto \mathrm{n}^{2}$
$\Rightarrow(\mathrm{I})(\mathrm{T})$
$\operatorname{mvr}=\frac{\mathrm{nh}}{2 \pi} \quad \Rightarrow(\mathrm{mrv}) \propto \mathrm{n}$
\Rightarrow (II) (S)
$\mathrm{KE}=+13.6 \times \frac{\mathrm{z}^{2}}{\mathrm{n}^{2}} \quad \Rightarrow \mathrm{KE} \propto \mathrm{n}^{-2}$
\Rightarrow (II) (S)
$\mathrm{PE}=-2 \times 13.6 \times \frac{\mathrm{z}^{2}}{\mathrm{n}^{2}} \quad \Rightarrow \mathrm{PE} \propto \mathrm{n}^{-2}$
$\Rightarrow(\mathrm{IV})(\mathrm{P})$
Q. 18 (4)

Same as 1 (Section-3)
Q. 19 (-5246.49)

At $\mathrm{d}=\mathrm{d}_{0}$, nucleus-nucleus \& electron-electron repulsion is absent.
Hence potential energy will be calculated for 2 H atoms. (P.E. due to attraction of proton \& electron)

P.E. $=\frac{-\mathrm{Kq}_{1} \mathrm{q}_{2}}{\substack{\text { (Bohrradius) }}}=\frac{\left(9 \times 10^{9}\right)\left(1.6 \times 10^{-19}\right)^{2}}{0.529 \times 10^{-10}}=-4.355 \times 10^{-21} \mathrm{~kJ}$

For $1 \mathrm{~mol}=-4.355 \times 10^{-21} \times 6.023 \times 10^{23}$

$$
=-2623.249 \mathrm{~kJ} / \mathrm{mol}
$$

For 2 H atoms $=-5246.49 \mathrm{~kJ} / \mathrm{mol}$

Mole Concept

EXERCISE-I

Elementary

Q. 1 (3)
Q. 2 (1)
(1) 6×10^{23} molecules has mass $=18 \mathrm{gm}$ 1 molecules has mass $=\frac{18}{6 \times 10^{23}}=3 \times 10^{-23} \mathrm{gm}$

$$
=3 \times 10^{-26} \mathrm{~kg}
$$

Q. 3 (1)
(1) $14 \mathrm{gm} \mathrm{N}^{3-}$ ions have $=8 \mathrm{~N}_{\mathrm{A}}$ valence electrons 4.2 gm of N^{3-} ions have $=\frac{8 \mathrm{~N}_{\mathrm{A}} \times 4.2}{14}=2.4 \mathrm{~N}_{\mathrm{A}}$
Q. 4 (2)
(2) $\because 22400 \mathrm{ml}$ at NTP has 6.023×10^{23} molecule
$\therefore 1 \mathrm{ml}$ at NTP has $=\frac{6.023 \times 10^{23}}{22400}$

$$
=0.0002688 \times 10^{23}=2.69 \times 10^{19} .
$$

Q. 5 (2)
(2) $\because 22400 c c$ of gas at STP has 6×10^{23} molecules
$\therefore \quad 1.12 \times 10^{-7}$ of gas at STP has $\frac{6 \times 10^{23} \times 1.12 \times 10^{-7}}{22400}=.03 \times 10^{14}=3 \times 10^{12}$.
Q. 6 (1)
(1) $\because 2.24 \mathrm{~L}$ of gas has mass $=4.4 \mathrm{gm}$
$\therefore \quad 22.4 L$ of gas has mass $=\frac{4.4}{2.24} \times 22.4=44$
So given gas is CO_{2} because CO_{2} has molecular mass $=44$.
Q. 7 (3)
(3) $\because \quad 100 \mathrm{gm} \mathrm{CaCO}_{3}=6.023 \times 10^{23}$ molecules
$\therefore \quad 10 \mathrm{gm} \mathrm{CaCO}_{3}=\frac{6.023 \times 10^{23}}{100} \times 10$

$$
=6.023 \times 10^{22} \text { molecule }
$$

1 molecule of $\mathrm{CaCO}_{3}=50$ protons
6.023×10^{22} molecule of $\mathrm{CaCO}_{3}=50 \times 6.023 \times 10^{22}$

$$
=3.0115 \times 10^{24}
$$

Q. 8 (1)
(1) 100 gm caffeine has 28.9 gm nitrogen

$$
194 \mathrm{gm} \text { caffeine has }=\frac{28.9}{100} \times 194=56.06 \mathrm{gm}
$$

$\therefore \quad$ No. of atoms in caffeine $=\frac{56.06}{14} \approx 4$.
Q. 9 (4)
(4) $\mathrm{C}=24 \mathrm{gm}, \mathrm{H}=4 \mathrm{gm}, \mathrm{O}=32 \mathrm{gm}$

So, Molecular formula $=\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$
So, Empirical formula $=\mathrm{CH}_{2} \mathrm{O}$
(Simplest formula).
Q. 10 (2)

Element At.wt. Mole Ratio Empiricalformula
$\begin{array}{llll}C=86 \% & 12 & 7.1 & 1\end{array} \mathrm{CH}_{2}$
$\begin{array}{llll}H=14 \% & 14 & 2 & \text { Beleongs }\end{array}$ alkene
Q. 11 (2)
(2)

Element \%(1) At.wt.(2) a/b Ratio

X	5010	5	2
Y	5020	2.5	1

Simplest formula $=X_{2} Y$
Q. 12 (3)

\[

\]

Oxygen is limiting reagent
So, $X=\frac{1}{5}=0.2$ all oxygen consumed
Left $\mathrm{NH}_{3}=1-4 \times 0.2=0.2$.
Q. 13 (3)
(3) $\because \quad 100 \mathrm{gm} \mathrm{Hb}$ contain $=0.33 \mathrm{gm} \mathrm{Fe}$
$\therefore \quad 67200 \mathrm{gm} \mathrm{Hb}=\frac{67200 \times 0.33}{100} \mathrm{gm} \mathrm{Fe}$
$g m$ atom of $F e=\frac{672 \times 0.33}{56}=4$.

Q. 14 (1)

(1) Isobutane and n-butane $\left[\mathrm{C}_{4} \mathrm{H}_{10}\right]$ have same molecular formula; $\mathrm{C}_{4} \mathrm{H}_{10}+\frac{13}{2} \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}_{2}+5 \mathrm{H}_{2} \mathrm{O}$

For 58 gm of $\mathrm{C}_{4} \mathrm{H}_{10} 208 \mathrm{gm} \mathrm{O} \mathrm{O}_{2}$ is required then for
5 kg of $\mathrm{C}_{4} \mathrm{H}_{10} \quad \mathrm{O}_{2}=\frac{5 \times 208}{58}=17.9 \mathrm{~kg}$
Q. 15 (3)
(3) $\mathrm{CaCO}_{100 \mathrm{~g}}+\underset{2 \mathrm{~N}}{2 \mathrm{HCl}} \rightarrow \mathrm{CaCl}_{2}+\underset{44 \mathrm{~g}}{\mathrm{CO}_{2}}+\mathrm{H}_{2} \mathrm{O}$
$100 \mathrm{~g} \mathrm{CaCO}_{3}$ with 2 N HCl gives $44 \mathrm{~g} \mathrm{CO}_{2}$ $100 \mathrm{~g} \mathrm{CaCO}_{3}$ with 1 N HCl gives $22 \mathrm{~g} \mathrm{CO}_{2}$

JEE-MAIN

OBJECTIVE QUESTIONS
Q. 1 mole $=\frac{\text { mass }}{\text { at. wt. }}=\frac{46}{23}=2$ mole.
Q. 2 (3)

In $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
$\frac{\text { mole of } \mathrm{Ca} \text { atom }}{\text { mole of } \mathrm{O} \text { atom }}=\frac{3}{8}$
Mole of ' O ' atom $=\frac{8}{3}$ (mole of Ca atom)
Mole of ' Ca ' atom $=3$
Q. 3 (1) No. of atom of $\left(\mathrm{C}_{4} \mathrm{H}_{10}\right)=\frac{1}{58} \times 14 \mathrm{~N}_{\mathrm{a}}$;
(2) No. of atom of $\left(\mathrm{N}_{2}\right)=\frac{1}{28} \times 2 \mathrm{~N}_{\mathrm{a}}$
(3) No. of atom of $(A g)=\frac{1}{108} \times 2 \mathrm{~N}_{\mathrm{a}} \quad$;
(4) No. of atom of water $=\frac{1}{18} \times 3 \mathrm{~N}_{\mathrm{a}}$

Hence greatest No. of atom $=\mathrm{C}_{4} \mathrm{H}_{10}$
Q. 4 (1)
$\stackrel{\mathrm{H}_{2} \mathrm{SO}_{4}}{\downarrow}$
32
so total molecular
mass $=98$

$$
\begin{aligned}
& \mathrm{A} \ell_{2}\left(\mathrm{SO}_{4}\right)_{3} \\
& \downarrow \\
& 3 \times 32 \\
& \Downarrow \\
& \frac{1}{3}\left(\mathrm{~A} \ell_{2}\left(\mathrm{SO}_{4}\right)_{3}\right)
\end{aligned}
$$

$$
\frac{1}{3} \times 342
$$

\Downarrow 114

$$
\frac{98}{114}=0.86
$$

Q. 5 (1)

Let mole of $\mathrm{B}=\mathrm{x}$
$\mathrm{V} . \mathrm{D}=25$ mole of $\mathrm{A}=100 \mathrm{x}$
Mol. mass $=50$
$\Rightarrow 250=\frac{80 x+40(100-x)}{100}$
$x=\frac{100}{4}=25$
Q. 6

			N_{2}
Ne	N_{2}	:	SO_{3}
Ratio of total	cula		1
: 1	1	:	1
So ratio of to	ms		2
: 1	3		4

Q. 7 (3)

NaI mass $=\frac{3 \times 0.5}{100}=0.015 \mathrm{gm}$
No. of moles of $\mathrm{NaI}=\frac{0.015}{150}=1 \times 10^{-4}$
No. of I^{-}ions $=10^{-4} \times 6.023 \times 10^{23}=6.023 \times 10^{19}$
Q. 8 (1)
$1.17=\frac{M_{\text {gas }}}{M_{\text {air }}}$
$1.17=\frac{M_{\text {gas }}}{29}$
M gas $=29 \times 1.17=33.9$
Q. 9 mole of $\mathrm{SO}_{2} \mathrm{Cl}_{2}=\frac{13.5}{135}=0.1$ mole.
Q. 10 (3)
$\mathrm{P}=\frac{\mathrm{M}}{\mathrm{V}_{\mathrm{f}}-\mathrm{V}_{\mathrm{i}}}=8.533$
Q. 11 (3)
(1) $n=\frac{10 \times 1}{18}=0.55$
(2) $\mathrm{n}=0.1 \times 5=0.5$
(3) $n=\frac{12}{48} \times 3=0.75$
(4) $n=\frac{N}{N A}=0.2 \times 2=0.4$
Q. $12 \frac{4.4}{x}=\frac{2.24}{22.4}$ (where x is mol. wt of gas)

$$
x=4.4 \times 10
$$

$$
\mathrm{x}=44\left(\mathrm{~N}_{2} \mathrm{O} \text { and } \mathrm{CO}_{2} \text { both gases may be possible }\right) .
$$

Q. 13 (1)

No. of atoms $=\frac{10^{23}}{3.9854}$
$=2.509 \times 10^{+22}$
Q. 14 (3)
(1) $n=\frac{12}{12}=1$
(2) $n=\frac{8}{16}=05$
(3) $n=\frac{32}{32}=1$
(4) $n=\frac{24}{24}=1$
Q. $15 \quad$ mole $=\frac{5.6}{22.4}$
$\therefore \quad$ no. of molecule $=\frac{5.6}{22.4} \times 2 \mathrm{~N}_{\mathrm{a}}=\frac{1}{2} \times 6.02$
$\times 10^{23}=3.01 \times 10^{23}$ atoms
Q. 16 (2)
$\mathrm{N}=6.023 \times 10^{23} \times \frac{2}{100}=1.20 \times 10^{22}$
Q. 17 Moles of $\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}=\frac{1}{8} \times 0.25=3.125 \times 10^{-2}$
Q. 18 mole $=\frac{1.12 \times 10^{-7}}{22400}$

No. of molecule $=\frac{1.12 \times 10^{-7}}{22400} \times 6.02 \times 10^{23}=3.01$ $\times 10^{12}$
Q. 19 No. of carbon atom in glucose $=\frac{1.71}{342} \times 12 \mathrm{~N}_{\mathrm{a}}$

$$
=3.6 \times 10^{22}
$$

Q. 20

	No.of atoms	mole	simplest ratio	ratio
Cr	4.8×10^{10}	$\frac{4.8 \times 10^{10}}{6 \times 10^{23}}=8 \times 10^{-14}$	$\frac{8 \times 10^{-4}}{8 \times 10^{-4}}=1$	1
O	9.6×10^{10}	$\frac{9.6 \times 10^{10}}{6 \times 10^{23}}=16 \times 10^{-14}$	$\frac{16 \times 10^{-14}}{8 \times 10^{-14}}$	2

Hence E.F. is CrO_{2}
Q. 21 (1)

	C	H	O
Mass	24	8	32
Moles	$\frac{24}{12}$	$\frac{8}{1}$	$\frac{32}{16}$
Ratio	2	8	2
Simple integer ratio			
L		4	1

Hence empirical formula is $\mathrm{CH}_{4} \mathrm{O}$
Q. 22 (1)

X
Y
$\frac{75.8}{75}$
$\frac{24.2}{16}$
1.01
1.5×2
2
3
Q. $23 n=\frac{\text { M.F.M }}{\text { E.F.M }}=\frac{120}{30} \quad \Rightarrow \quad n=4$

$$
\begin{aligned}
\Rightarrow \mathrm{M} . \mathrm{F} & =\mathrm{n} \times \mathrm{CH}_{2} \mathrm{O} \\
& =4 \times \mathrm{CH}_{2} \mathrm{O} \\
& =\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}
\end{aligned}
$$

Q. 24

			Simplest ratio	Ratio
C	75	$75 / 12=6.25$	$6.25 / 6.25=1$	1
H	25	$25 / 1=25$	$25 / 6.25=4$	4

Hence E.F is $\mathrm{CH}_{4} \&$ M.F is $=\mathrm{n} \times$ E.F $(\mathrm{n}=1,2,3 \ldots .$. $=1 \times \mathrm{CH}_{4}=\mathrm{CH}_{4}$.

X	$\frac{\mathrm{a}}{30}$	Simplest ratio $\mathrm{a} / 30 / \mathrm{a} / 30=1$	ratio 2
Y	$\frac{\mathrm{a}}{20}$	$\mathrm{a} / 20 / \mathrm{a} / 30=3 / 2$	3

Hence E.F is $\mathrm{X}_{2} \mathrm{Y}_{3}$.
Q. 26 (1)
$\mathrm{C}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}}+\left(\mathrm{x}+\frac{\mathrm{y}}{4}\right) \mathrm{O}_{2} \longrightarrow \mathrm{XCO}_{2}+\frac{\mathrm{y}}{2} \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
(g)
(g)
$\frac{\left(1+x+\frac{y}{4}\right)}{\left(x+\frac{y}{2}\right)}=\frac{600}{700}$
$x+7=\frac{5 y}{4}$
by option (1)

$$
\mathrm{x}=941.76 .
$$

Q. 27 (4)

Mole fraction of $\mathrm{H}_{2} \mathrm{O}=1-0.25=0.75$
$\frac{\mathrm{X}_{\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}}}{\mathrm{X}_{\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}}+\mathrm{X}_{\mathrm{H}_{2} \mathrm{O}}}=\frac{\mathrm{n}_{\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}}}{\mathrm{n}_{\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}}+\mathrm{n}_{\mathrm{H}_{2} \mathrm{O}}}$ or wt. $\%=$
$\frac{0.25 \times 46}{0.25 \times 46+0.75 \times 18} \times 100=46 \%$.
Q. 28 E.F of glucose $=\mathrm{CH}_{2} \mathrm{O}$
E.F of $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)=\mathrm{CH}_{2} \mathrm{O}$
\because M.F $=\mathrm{n} \times$ E.F (where $\mathrm{n}=1,2,3 \ldots$. .).
Q. 29

$$
194 \times \frac{28.9}{100}
$$

$$
=56.06 \mathrm{~g}
$$

No. of Nitrogen $=\frac{56.06}{14}=4$
Q. 30 (3)
$\mathrm{CO}_{2}=132 \mathrm{~g}=\frac{132}{44}$ mole $=3$ mole
$\mathrm{H}_{2} \mathrm{O}=54 \mathrm{~g}=\frac{54}{18}$ mole $=3$ mole
$\Rightarrow \mathrm{C}$ atoms $=3 \mathrm{~mole}$
H atoms $=6$ mole
by option C

Q. 31 (1)

Same emprical formula
\Rightarrow same compostion by mass
Q. 32 (1)
$\mathrm{Fe}_{2} \mathrm{O}_{3}=\frac{2 \times 56}{3 \times 16}=\frac{7}{3}$
$\mathrm{FeO}=\frac{56}{16}=\frac{7}{2}$
$\therefore \mathrm{Fe}_{2} \mathrm{O}_{3}: \mathrm{FeO}=\frac{7}{3} \times \frac{7}{2}=3: 2$
Q. 33 (3)

A: B:C $\Rightarrow 1: 3: 5$
$b \Rightarrow x: y=32: 84$ by mass
$=1: 3$ by mole
$C \Rightarrow x: y=16: 5 \Rightarrow 16: 70$
Q. $34 x \times \frac{3.4}{100}=32$
Q. 35 Urea $\left(\mathrm{NH}_{2} \mathrm{COH}_{2}\right)$
M.wt of Urea $=60$
$\%$ of $\mathrm{N}=\frac{28}{60} \times 100=46 \%$.
Q. 36 (2)
$0.8 v+(54.2-v) \times 1=49.6$
$\mathrm{V}=\frac{4.6}{0.2}=23 \mathrm{ml}$
$\%$ ethanol $=\frac{23 \times 0.8}{49.6} \times 100=37.1 \%$
Q. 37 (1)
amount of butter $=\frac{2 \times 10^{-3}}{5.5 \times 10^{-6}}=363.6 \mathrm{gm}$
(2)

Let initial $=x g ; \frac{0.15 x-5}{x-5}=\frac{8}{100} \Rightarrow x=\frac{460}{7} g$
$\frac{0.4 x}{x-5} \times 100=43.29 \%$
Q. 39 (3)
$\frac{\Delta x}{x}=\frac{\Delta y}{y}$
$\Rightarrow y^{\prime}=y+\Delta y=\frac{16.006}{16} \times 107.868$
Q. 40 (4)
$\operatorname{Mavg}=\frac{8.082 \times 12 \times 0.234+7.833 \times 12 \times 0.766}{1}$
Q. 41 (3)

$$
\begin{array}{cc}
0.79 \times 24+\mathrm{x}+26+(21-\mathrm{x}) \times 25=24.31 \\
\therefore & \mathrm{x}=0.1 \\
\therefore & \% \mathrm{Mg}^{26}=10 \%
\end{array}
$$

Q. 42 (2)
$\mathrm{M}_{2} \mathrm{O}_{3} 0.30 \times(2 \mathrm{M}+48)=48$
$0.6 \mathrm{M}=0.7 \times 48$
$\mathrm{M}=7 \times 8=56$
(4)
Q. $44 \mathrm{BaCO}_{3} \longrightarrow \mathrm{BaO}+\mathrm{CO}_{2}$
$\frac{9.85}{197}$
mole-mole analysis

$$
\frac{\frac{9.85}{197}}{1}=\frac{\text { mole of } \mathrm{BaO}}{1}
$$

Hence $\frac{9.85}{197}=\frac{\text { vol }}{22.4}$ (at STP)
$\mathrm{Vol}=\frac{1120}{1000}=1.12 \mathrm{Lit}$.

Q. 45 (1)

$\mathrm{CaC}_{2}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{C}_{2} \mathrm{H}_{2} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{4}$... (1)
$\left.\mathrm{nC}_{2} \mathrm{H}_{4} \longrightarrow+\mathrm{CH}_{2}-\mathrm{CH}_{2}\right\rangle_{\mathrm{n}}$
... (2)

From equation (1)

$$
\text { mole of } \mathrm{CaC}_{2}=\text { mole of } \mathrm{C}_{2} \mathrm{H}_{4}
$$

$$
\frac{64 \times 10^{3}}{64}=\text { mole of } \mathrm{C}_{2} \mathrm{H}_{4}
$$

From equation (2)

$$
\begin{aligned}
& \frac{\text { mole of } \mathrm{C}_{2} \mathrm{H}_{4}}{\mathrm{n}}=\frac{\text { mole of polymer }}{1} \\
& \frac{10^{3}}{\mathrm{n}}=\frac{\mathrm{wt} \text { of polymer }}{\mathrm{n}(28)}
\end{aligned}
$$

Wt. of polymer $=28 \times 10^{3} \mathrm{~g}=28 \mathrm{Kg}$

Q. 46 (1)

Use reaction $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}+12 \mathrm{O}_{2} \rightarrow 12 \mathrm{CO}_{2}+11 \mathrm{H}_{2} \mathrm{O}$.
In 24 hr . moles of sucrose consumed $=\frac{34}{342} \times 24$.
\therefore In 24 hr . moles of O_{2} required $=\frac{34}{342} \times 24 \times 12$. (according to stoichiometry).

$$
\text { Mass of } \mathrm{O}_{2} \text { required }=\frac{34}{342} \times 24 \times 12 \times 32=
$$ 916.2 g .

Q. $47 \quad \mathrm{C}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}}+\mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$

POAC on c
$x \times \frac{500}{22400}=1 \times \frac{2.5}{22.4}$
$\mathrm{x}=5$
POAC on H
$y \times \frac{500}{22400}=2 \times \frac{3}{22.4}$
$\mathrm{y}=12$
Hence hydrocarbon is $\mathrm{C}_{5} \mathrm{H}_{12}$.
Q. 48 (1)

$$
\underset{10}{2 \mathrm{SO}_{2}}+\mathrm{O}_{2} \longrightarrow \underset{15}{\longrightarrow} \mathrm{SO}_{3}
$$

Initial mole
Final mole $\quad(10-2 x)(15-x) \quad 2 x$
\because Given $\quad 2 \mathrm{x}=8$
$\therefore \quad \mathrm{x}=4$
\therefore Mole of SO_{2} left $=10-2 \times 4=2$
Mole of O_{2} left $=15-4=11$
Q. $49 \quad 2 \mathrm{NH}_{3}+\frac{5}{2} \mathrm{O}_{2} \longrightarrow 2 \mathrm{NO}+3 \mathrm{H}_{2} \mathrm{O}$
from mole-mole analysis
$\frac{\mathrm{n}_{\mathrm{NH}_{3}}}{2}=\frac{\mathrm{n}_{\mathrm{O}_{2}}}{5 / 2}$
$\frac{6.8}{\frac{17}{2}}=\frac{\mathrm{n}_{\mathrm{O}_{2}}}{\frac{5}{2}}$
$\mathrm{n}_{\mathrm{O}_{2}}=0.5$ mole.
Q. 50 (4)

$$
\begin{equation*}
\mathrm{C}+\frac{1}{2} \mathrm{O}_{2} \longrightarrow \mathrm{CO} \tag{1}
\end{equation*}
$$

Initial mole $\frac{x}{12} \quad \frac{y}{32} 0$

Final mole 0

$$
\frac{y}{32}-\left(\frac{x}{12}\right) \frac{1}{2}
$$

$$
\begin{equation*}
\mathrm{CO} \quad+\frac{1}{2} \quad \mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2} \cdots \tag{2}
\end{equation*}
$$

For no solid residue C should be zero in eq. (1)
For that $\frac{y}{32}-\frac{x}{12} \times \frac{1}{2}>0$

$$
\frac{y}{32}>\frac{x}{24}
$$

$$
\frac{y}{x}>\frac{32}{24} \quad \frac{y}{x}>1.33
$$

Q. $51 \quad \mathrm{C}_{2} \mathrm{H}_{4}+3 \mathrm{O}_{2} \longrightarrow 2 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$

From Gay lussac's law $\mathrm{C}_{2} \mathrm{H}_{4} \& \mathrm{O}_{2}$ are in 1:3 vol.ratio i.e O_{2} will be 60 ml .
Q. 52 (2)
$(\mathrm{C}+\mathrm{S}) \longrightarrow \mathrm{CO}_{2}+\mathrm{SO}_{2}$
$\mathrm{n}_{\mathrm{SO}_{2}}=\frac{\mathrm{n}_{\mathrm{CO}_{2}}}{2}$

Let wt. of $\mathrm{C}=\mathrm{x}$
So, wt. of $\mathrm{S}=12-\mathrm{x}$

$$
\frac{12-x}{32}=\frac{1}{2}\left(\frac{x}{12}\right)
$$

$$
\mathrm{x}=5.14 \mathrm{~g}
$$

Q. 53 Moles of $\mathrm{Na}_{2} \mathrm{CO}_{3}=\frac{21.2 \times 10^{3}}{106}=200$

So moles of $\mathrm{CO}_{2}=200$
\& so moles of CaCO_{3} reqd $=200$
$\therefore \quad$ wt of CaCO_{3} reqd $=200 \times 100=20 \mathrm{~kg}$.

Q. 54 (2)

Let mol of Fe undergoing formation of $\mathrm{FeO}=\mathrm{x}$
Let mol of Fe undergoing formation of $\mathrm{Fe}_{2} \mathrm{O}_{3}=1-\mathrm{x}$
then, $\mathrm{Fe} \quad+\frac{1}{2} \mathrm{O}_{2} \longrightarrow \quad \mathrm{FeO}$

$$
\mathrm{x}
$$

x

$$
\begin{aligned}
2 \mathrm{Fe}+ & \frac{3}{2} \mathrm{O}_{2} \longrightarrow \\
& \mathrm{Fe}_{2} \mathrm{O}_{3} \\
& 1-\mathrm{x}
\end{aligned} \quad \frac{3}{4}(1-\mathrm{x}) \frac{1-\mathrm{x}}{2} .
$$

As given, $\quad \frac{x}{24}+\frac{3}{4}(1-x)=0.65$
$=$ Total moles of oxygen
$x=0.4=$ moles of FeO

$$
\frac{1-x}{2}=0.3=\text { moles of of } \mathrm{Fe}_{2} \mathrm{O}_{3}
$$

$\Rightarrow \frac{\text { Mole of } \mathrm{FeO}}{\text { Mole of } \mathrm{Fe}_{2} \mathrm{O}_{3}}=\frac{4}{3}$
Q. 55 (2)
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}+7 \mathrm{O}_{2} \longrightarrow 6 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}(\ell)$
30 ml
$6 \times 30=180 \mathrm{ml}$ of CO_{2} is produced
Volume used initially

$$
=30+210=240
$$

(for $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$) (for O_{2})
change in volume $=240-180=60 \mathrm{ml}$
Q. 56 (3)

$$
\mathrm{N}_{\mathrm{x}} \mathrm{O}_{\mathrm{y}}+\mathrm{y} \mathrm{H}_{2} \longrightarrow \mathrm{yH}_{2} \mathrm{O}(\ell)+\mathrm{x} / 2 \mathrm{~N}_{2}(\mathrm{~g})
$$

$$
\frac{x / 2}{y}=\frac{10}{30}
$$

$$
\frac{x}{y}=\frac{2}{3}
$$

Q. $57 \mathrm{CaC}_{2}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{C}_{2} \mathrm{H}_{2}$
$\frac{100}{64} \quad$ (excess)
From mole-mole analysis
$\frac{100}{64}=\frac{\mathrm{n}_{\mathrm{C}_{2} \mathrm{H}_{2}}}{1} \quad($ here $\mathrm{n}=$ mole $)$
vol. $=\mathrm{n}_{\mathrm{C}_{2} \mathrm{H}_{2}} \times 22.4$ (at N.T.P)

$$
=\frac{100}{64} \times 22.4=35 \mathrm{lit} .
$$

Q. 58 (1)

On balacing Na atoms on both sides of reaction, we get :
$y=6 x$.
$\therefore x: y=1: 6 \quad$ (only A option matches).
Q. 59 (2)

C $=84 / 12=7$ mole
$\mathrm{H}_{2}=12 \mathrm{~g}=6 \mathrm{~mole}$
$\mathrm{O}_{2}=56 / 22.4=5 / 2 \mathrm{~mole}$
$12 \mathrm{C}+11 \mathrm{H}_{2}+11 / 2 \mathrm{O}_{2} \longrightarrow \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$
L.R. $=\mathrm{O}_{2}$
$11 / 2$ mole O_{2} produce 1 mole sucrose
$5 / 2$ mole O_{2} will for $5 / 11$ mole sucrose
mass of sucrose $=5 / 11 \times(\mathrm{mol}$. mass $)$
$=5 / 11 \times 342$
$=155.45 \mathrm{~g}$
Q. 60 On balancing the reaction,
$\mathrm{C}_{4} \mathrm{H}_{10}+\frac{13}{2} \mathrm{O}_{2} \longrightarrow 4 \mathrm{CO}_{2}+5 \mathrm{H}_{2} \mathrm{O}$
$\frac{\text { Mole of } \mathrm{C}_{4} \mathrm{H}_{10}}{1}=\frac{\text { Mole of } \mathrm{CO}_{2}}{4 \times 1}$
Hence mole of $\mathrm{CO}_{2}=4 \times$ mole of $\mathrm{C}_{4} \mathrm{H}_{10}$

$$
4 \times 0.15=0.60^{4}
$$

Q. 61 (3)
$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}+2 \mathrm{O}_{2} \longrightarrow 2 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
n mole $2 n$ mole for max. energy
60 n gram $2 \mathrm{n} \times 32$ gram
$\Rightarrow 60 \mathrm{n}$ gram $\quad 64 \mathrm{n}$ gram
$\Rightarrow 60 \mathrm{n}+64 \mathrm{n}=620 \Rightarrow \mathrm{n}=5$
produced $\mathrm{CO}_{2}=2 \mathrm{n}=10$ mole
CO_{2} mass produced $=10 \times 44=440$ gram
Q. 62 (3)
$\mathrm{C}_{4} \mathrm{H}_{10}=80 \mathrm{ml}$
$\mathrm{CH}_{4}=\mathrm{xml} \mathrm{CO}=\mathrm{y} \mathrm{ml}$
$\mathrm{x}+\mathrm{y}=120 \mathrm{ml}$
$\mathrm{C}_{4} \mathrm{H}_{10} \longrightarrow 4 \mathrm{CO}_{2}$,

Q. 63 (3)

$\mathrm{CO}=\mathrm{x} \mathrm{ml} ; \mathrm{CO}_{2}=\mathrm{yml}, \mathrm{N}_{2}=\mathrm{z} \mathrm{ml}$
$x+y+z=200$
....(i)
$\mathrm{CO}+1 / 2 \mathrm{O}_{2}=\mathrm{CO}_{2}$
x o \quad Contraction $=\mathrm{x} / 2$
o X
CO_{2} No reaction ; $\mathrm{N}_{2}+\mathrm{O}_{2} \longrightarrow$ no reaction
change in volume $=x / 2=40$
$\mathrm{x}=80 \mathrm{ml}$
$x+y=200 \times \frac{50}{100}=100$
...(ii)
$\mathrm{y}=20 \mathrm{ml} ; \mathrm{z}=100 \mathrm{ml}$
Q. 64 (1)

Let volume is V ml

$$
\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NaOH} \longrightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}
$$

mmole $0.2 \mathrm{~V} \quad 40 \times 0.1$
m. moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$ remains $=0.2 \mathrm{~V}-\frac{40 \times 0.1}{2}$
$\frac{0.2 \mathrm{~V}-\frac{40 \times 0.1}{2}}{\mathrm{~V}+40}=\frac{6}{55} \mathrm{~V}=70 \mathrm{~mL}$
Q. $653 \mathrm{BaCl}_{2}+2 \mathrm{Na}_{3} \mathrm{PO}_{4} \longrightarrow \mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}+6 \mathrm{NaCl}$ mole $0.5 \quad 0.1$
$\frac{0.5}{3} \quad \frac{0.1}{2}\left(\mathrm{~L} . \mathrm{R}\right.$ is $\left.\mathrm{Na}_{3} \mathrm{PO}_{4}\right)$
Now from mole- mole analysis

$$
\begin{gathered}
\frac{\text { mole of } \mathrm{Na}_{3} \mathrm{PO}_{4}}{2}=\frac{\text { mole of } \mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}}{1} \\
=\frac{0.1}{2}=\text { mole of } \mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}
\end{gathered}
$$

Q. 66

$$
\begin{aligned}
& \left.\frac{8}{2}=\frac{n_{R}}{1} \text { (here } n=\text { mole }\right) \\
& n_{R}=4 \text { mole of } R .
\end{aligned}
$$

Q. 67
(1)

1 mol of x will give $=\frac{5}{2}=2.5 \mathrm{~mol}$
But $\%$ yield $=\frac{1.25}{2.5} \times 100=\mathbf{5 0 \%}$
Q. 68 (1)
(1) Explanation: $2 \mathrm{Ag}+\mathrm{S} \rightarrow \mathrm{Ag}_{2} \mathrm{~S}$
$2 \times 108 \mathrm{~g}$ of Ag reacts with 32 g of sulphur
10 g of Ag reacts with $\frac{32}{216} \times 10=\frac{320}{216}>1 \mathrm{~g}$
It means ' S ' is limiting reagent
32 g of S reacts to form $216+32=248 \mathrm{~g}$ of $\mathrm{Ag}_{2} \mathrm{~S}$

1 g of S reacts to form $=\frac{248}{32}=7.75 \mathrm{~g}$
Alternately
n_{eq} of $\mathrm{Ag}=\frac{10}{108}=0.0925$
$n_{e q}$ of $S=\frac{1}{16}=0.0625 \quad\left(n_{\text {eq }}=\right.$ number of equivalents)
Since n_{eq} of S is less than n_{eq} of Ag
$\Rightarrow 0.0625 \mathrm{eq}$ of Ag will react with 0.0625 eq of S to form 0.0625 eq of $\mathrm{Ag}_{2} \mathrm{~S}$
Hence, amount of $\mathrm{Ag}_{2} \mathrm{~S}=\mathrm{n}_{\text {eq }} \times$ Eq. wt. of $\mathrm{Ag}_{2} \mathrm{~S}=$ $0.0626 \times 124=7.75 \mathrm{~g}$
Q. 69

$$
2 \mathrm{H}_{2}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}
$$

mole

$$
\begin{array}{lll}
\frac{4}{2} \quad \frac{4}{32}= & \frac{1}{8} \\
\frac{4 / 2}{2} & \frac{1 / 8}{1} & \left(\mathrm{O}_{2} \text { is L.R. }\right)
\end{array}
$$

From mole-mole analysis

$$
\begin{aligned}
& \frac{1}{8} \\
& \frac{8}{1}=\frac{\mathrm{n}_{\mathrm{H}_{2} \mathrm{O}}}{2} \\
& \mathrm{n}_{\mathrm{H}_{2} \mathrm{O}}=\frac{1}{4} \\
& \text { Mass }_{\mathrm{H}_{2} \mathrm{O}}=\frac{1}{4} \times 18=4.5 \mathrm{~g} .
\end{aligned}
$$

Q. 70

$$
\begin{array}{lll}
\mathrm{A} & +2 \mathrm{~B} \rightarrow \mathrm{C} & \\
5 & 8 \\
\frac{5}{1} & \frac{8}{2} & \text { (B is L.R) }
\end{array}
$$

From mole-mole analysis

$$
\begin{aligned}
\frac{8}{2} & =\frac{n_{C}}{1} \\
n_{C} & =4 \text { mole of } C .
\end{aligned}
$$

Q. 71 (1)

Limiting reactant is A
Ideally with 2 moles of A, D formed $=3$ moles
But yield = 25\%
So, moles of D formed
$=3 \times 0.25=\mathbf{0 . 7 5} \mathbf{~ m o l}$
Q. 72

$$
2 \mathrm{H}_{2}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}
$$

Given moles $\quad\left(\frac{8}{2}\right) \quad\left(\frac{16}{32}\right)$
4
0.5

So $\quad \mathrm{O}_{2}$ is the limiting reagent moles used of $\mathrm{H}_{2}=1$
So unreacted moles $=6 \mathrm{gm}$.
Q. $73 \mathrm{LR} \rightarrow \mathrm{HCl}$, so Mole of $\mathrm{H}_{2}=\frac{\text { Mole of } \mathrm{HCl}}{2}$

$$
=\frac{0.52}{2}=0.26
$$

Q. 74 (1)
(1) L.R. $\longrightarrow \mathrm{Al}$
(2) Mole of $\mathrm{AlCl}_{3}=$ mole of $\mathrm{Al}=1.0$
(3) Mole of Cl_{2} used $=1.5$

Hence left mole $=3-1.5=1.5$.
Q. 75 (1)

Q. 76 (1)
21.6

$$
\mathrm{Ag}+\mathrm{HMO}_{3} \xrightarrow{\mathrm{NaCl}}
$$

mole $\quad \frac{21.6}{108}=0.2$
Ag Atom remain conseved So No. of mole of $\mathrm{Ag}=\quad$ No. of mole of Ag CI

So. No. of mole of $\mathrm{AgCI}=0.2$
Weight of $\mathrm{AgCI}=$
$\%$ Yield $=\frac{14.35}{28.7} \times 100=50 \%$.
Q. 77 (2)
$\mathrm{M}_{2}\left(\mathrm{CO}_{3}\right)_{\mathrm{n}}+2 \mathrm{HCl} \rightarrow \mathrm{nCO}_{2}+2 \mathrm{MCl}_{\mathrm{n}}+\mathrm{H}_{2} \mathrm{O}$
balancing O atom
$3 n=2 n+1$
$\mathrm{n}=1$
Q. 78 (1)
$\mathrm{M}_{1} \mathrm{~V}_{1}+\mathrm{M}_{2} \mathrm{~V}_{2}=\mathrm{M}_{\mathrm{R}}\left[\mathrm{V}_{1}+\mathrm{V}_{2}\right]$
$1 \times 500+1 \times 500=\quad \begin{aligned} & \mathrm{M}_{\mathrm{R}}[500+500] \\ & \mathrm{M}_{\mathrm{R}}=1 .\end{aligned}$
Q. 79 (3)
$0.050 \times 2=\frac{0.10 \times 2 \times V-50 \times 0.10 \times 1}{V+50}$
$\Rightarrow \quad \mathrm{V}=100 \mathrm{ml}$.
Q. 80 (1)

Molality $=\frac{X_{B}}{X_{A} \times M_{A}} \times 1000$
$\mathrm{m}_{\mathrm{B}}=75 \mathrm{~m}$
$m=\frac{M \times 1000}{d \times 1000-M \times M_{1}}$
$\mathrm{M}=30$
Q. 81 (1)
$\mathrm{NaOH}=\frac{125 \mathrm{ml} \times 1 \times \frac{8}{100}}{40}$ mole
$\mathrm{HCl}=\frac{125 \times \frac{10}{100}}{36.5}=0.34$ mole
$\mathrm{HCl}>\mathrm{NaOH}$
Acidic
(1)

Both have equal volume $=\mathrm{V}$
$\mathrm{HCl}=\frac{\left(\mathrm{v} \times \frac{10}{100}\right) \times \mathrm{d}_{\mathrm{HCl}}}{36.5}$ mole;
$\mathrm{NaOH}=\frac{\left(\mathrm{v} \times \frac{10}{100}\right) \times 1.5 \mathrm{~d}_{\mathrm{HCl}}}{40}$ mole
NaOH mole $>\mathrm{HCl}$ mole
Basic Solution

Q. 83 (3)

Molarity $=\frac{6.02 \times 10^{22}}{6.02 \times 10^{23}} \times \frac{1}{1 / 2}=0.2$
Q. $84 \quad$ (1)

Molar fraction \& molality is independent of temperature.
Q. 85 (4)
$\mathrm{M}=\frac{\% \text { by weight } \times 10 \times \mathrm{d}}{\mathrm{Mw}_{2}}=\frac{36.5 \times 10 \times 1.2}{36.5}=12$
M
$\mathrm{m}=\frac{36.5 \times 1000}{36.5 \times(100-36.5)}=\frac{1000}{63.5}=15.7 \mathrm{~m}$
Q. $86 \quad\left[\mathrm{NO}_{3}^{-}\right]=\frac{0.1 \mathrm{~V}+0}{2 \mathrm{~V}}=\frac{0.1}{2}=0.05 \mathrm{M}$
Q. 87 (2)

1000 mL solution contain 2 mole of ethanol or 1000 $\times 1.025 \mathrm{~g}$ solution contain 2 mole of ethanol wt. of solvent $=1000 \times 1.025-2 \times 46$
$\mathrm{m}=\frac{2}{1000 \times 1.025-2 \times 46} \times 1000$
$\mathrm{m}=\frac{2}{933} \times 1000=2.143$
Q. 88 (3)

Molarity $=\frac{6.02 \times 10^{22}}{6.02 \times 10^{23}} \times \frac{1}{1 / 2}=0.2$
Q. $89 \quad M=\frac{\frac{2.8}{56}}{100} \times 1000=\frac{1}{2} \mathrm{M}$
Q. 90 (1)

100 gm oleum gives $\mathrm{H}_{2} \mathrm{SO}_{4}=112 \mathrm{gm}$
12.5 gm will give $\mathrm{H}_{2} \mathrm{SO}_{4}=\frac{112}{100} \times 12.5=14 \mathrm{gm}$

No. of moles of $\mathrm{H}_{2} \mathrm{SO}_{4}=\frac{14}{98}$
Conc. of H^{+}ions $=\frac{\frac{14}{98} \times 2}{100}=2.85 \times 10^{-3} \mathrm{M}$
Q. 91 (2)

Let, $\mathrm{n}_{\mathrm{H}_{2} \mathrm{O}}=\mathrm{n}_{\mathrm{NaCl}}=\mathrm{n}$
$\mathrm{m}=\frac{\text { Mole of solute }}{\mathrm{wt} \text {. of solvent }(\mathrm{kg})}=\frac{\mathrm{n}}{\mathrm{n} \times 18} \times 1000$

$$
=\frac{1}{18} \times 1000=55.55 \mathrm{~m} .
$$

Q.92 $\quad \frac{250 \times 0.5+0}{750} \times N_{A}=6 \times 6.023 \times 10^{23}=3.76 \times 10^{22}$
Q. 94 (3)
$\mathrm{V}_{1} \mathrm{ml} 0.2 \mathrm{M} \mathrm{NaOH}, \mathrm{V}_{2} \mathrm{ml} 0.1 \mathrm{M} \mathrm{CaCl}_{2}$
$(+$ ve ion $)=0.2 \mathrm{~V}_{1}=0.1 \mathrm{~V}_{2}$ mole
$(-\mathrm{ve}$ ion $)=0.2 \mathrm{~V}_{1}+0.1 \times 2 \mathrm{~V}_{2}$
$=0.2 \mathrm{~V}_{1}+0.2 \mathrm{~V}_{2}$ mole
by equation
$(+v e)=(-v e)-(-v e) \times \frac{40}{100}$
$=(-\mathrm{ve}) \times \frac{60}{100}$
$\Rightarrow 0.2 \mathrm{~V}_{1}+0.1 \mathrm{~V}_{2}=0.2\left(\mathrm{~V}_{1}+\mathrm{V}_{2}\right) \times \frac{6}{10}$
$\Rightarrow 2 \mathrm{~V}_{1}+\mathrm{V}_{2}=1.2 \mathrm{~V}_{1}+1.2 \mathrm{~V}_{2}$
$\Rightarrow 0.8 \mathrm{~V}_{1}=0.2 \mathrm{~V}_{2} \Rightarrow 4 \mathrm{~V}_{1}=\mathrm{V}_{2}$
$\mathrm{V}_{1}=200 \mathrm{ml}, \quad \mathrm{V}_{2}=800 \mathrm{ml}$
Q. $95 \mathrm{~m}=0.2$ mole / kg
weight of solvent $=1000$ gram
weight of solute $=0.2 \times 98=19.6$ gram
Total weight of solution $=1000+19.6=1019.6$
ml .
Q. 96 (1)

Mole fraction of A i.e. $X_{A}=\frac{n_{A}}{\text { Total moles }}$
So $\mathrm{X}_{\mathrm{H} 2 \mathrm{O}}=\frac{\mathrm{n}_{\mathrm{H}_{2} \mathrm{O}}}{\text { Total moles }}$
Now $\frac{\mathrm{X}_{\mathrm{A}}}{\mathrm{X}_{\mathrm{H}_{2} \mathrm{O}}}=\frac{\mathrm{n}_{\mathrm{A}}}{\mathrm{n}_{\mathrm{H}_{2} \mathrm{O}}}$
and molality $=\frac{n_{A} \times 1000}{n_{H_{2} \mathrm{O}} \times 18}=\frac{X_{A} \times 1000}{X_{H_{2} \mathrm{O}} \times 18}$
$=\frac{0.2 \times 1000}{0.8 \times 18}=13.9$ Ans.
Q. 97 (3)

Molarity $=\frac{98 \times 10 \times 1.84}{G \mathrm{~mm}}=18.4 \mathrm{M}$
$\left\{\therefore \mathrm{M}=\frac{(\% \mathrm{w} / \mathrm{w}) \times(\mathrm{d}) \times 10}{\text { Mol.mass of solute }}\right\}(\mathrm{d}$ in g / ml.
Q. 98 (2)

Weight of $\mathrm{KOH}=2.8$ gram
Volume of solution $=100 \mathrm{ml}$

$$
\mathrm{M}=\frac{2.8 \times 1000}{56 \times 100}=\frac{28}{56}=0.5 \mathrm{M}
$$

Q. 99 (3)

Molarity of $\mathrm{Cl}^{-}=3\left(\right.$ molarity of $\left.\mathrm{FeCl}_{3}\right)=3\left(\frac{\mathrm{M}}{30}\right)=$

$$
\frac{\mathrm{M}}{10} .
$$

Q. 100 (1)

$$
\begin{array}{ll}
\mathrm{M}_{1} \mathrm{~V}_{1}+\mathrm{M}_{2} \mathrm{~V}_{2}= & \mathrm{M}_{\mathrm{R}}\left[\mathrm{~V}_{1}+\right. \\
\left.\mathrm{V}_{2}\right] \\
1 \times 500+1 \times 500 & =\mathrm{M}_{\mathrm{R}} \\
{[500+500]} & \\
& M_{\mathrm{R}}=1
\end{array}
$$

Q. 101 (3)

$$
M_{\text {final }}=\frac{M_{1} V_{1}+M_{2} V_{2}}{V_{1}+V_{2}+V_{\text {water }}} \quad ; \quad 0.25=
$$

$$
\frac{0.6 \times 250+0.2 \times 750}{250+750+V_{\text {water }}} ; \text { So } V_{\text {water }}=200 \mathrm{~mL} .
$$

Q. 102 (2)

Mole $=\mathrm{M} \times \mathrm{V}$
$100 \times 10^{-3}=0.8 \times \mathrm{V}$
$\mathrm{V}=0.125$
Q. 103 (4)

Moles of Cl^{-}in 100 ml of solution $=\frac{2}{58.5}+\frac{4}{111} \times$
$2+\frac{6}{53.5}=0.2184$
Molarity of $\mathrm{Cl}^{-}=\frac{0.2184}{100} \times 1000=2.184$.
Q. 104 (4)

Conc. of cation $=\frac{400+300+200}{400}$

Conc. of anion $=\frac{200+300+400}{400}$
\therefore Ratio of the conc. $=1$

JEE-ADVANCED

OBJECTIVE QUESTIONS

Q. $1 \quad$ (1)
$46 \mathrm{x}+30(100-\mathrm{x})=34 \times 100$
Let $\%$ by mole of NO_{2} be x .
Q. 2 (3)
$\mathrm{M}_{\mathrm{avg}}=24.31=\frac{79 \times 24+(21-\mathrm{x}) \times 25+\mathrm{x} \times 26}{100}$
$\mathrm{x}=10$
Q. 3 (2)

The weight \% of available Cl_{2} from the given sample of bleaching powder on reaction with dil acids or CO_{2} is called available chlorine.
$\mathrm{CaOCl}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{CaSO}_{4}+\mathrm{H}_{2} \mathrm{O}+\mathrm{Cl}_{2}$
Max. \% of available of $\mathrm{Cl}_{2}=\frac{71}{127} \times 100=55.9 \%$.
Q. 4 (1)

Average atomic mass
$=\frac{\% \text { of I isotope } \times \text { its atomic mass }+\% \text { of II isotope } \times \text { its atomic mass }}{100}$
$=\frac{75.53 \times 34.969+24.47 \times 36.96}{100}$
$=35.5 \mathrm{amu}$.
Q. 5 (3)
$\therefore 1 \mathrm{~mol}$ of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ has $=6 \mathrm{~N}_{\mathrm{A}}$ atoms of C
$\therefore 0.35 \mathrm{~mol}$ of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ has
$=6 \times 0.35 \mathrm{~N}_{\mathrm{A}}$ atoms of C
$=2.1 \mathrm{~N}_{\mathrm{A}}$ atoms
$=2.1 \times 6.022 \times 10^{23}=\mathbf{1 . 2 6} \times \mathbf{1 0}^{\mathbf{2 4}}$ carbon atoms
Q. 6 (1)
\because mol. wt. of $\mathrm{CaCl}_{2}=111 \mathrm{~g}$
$\because \quad 111 \mathrm{~g} \mathrm{CaCl}_{2}$ has $=\mathrm{N}_{\mathrm{A}}$ ions of Ca^{+2}
$\therefore 222 \mathrm{~g}$ of CaCl_{2} has $\frac{\mathrm{N}_{\mathrm{A}} \times 222}{111}=2 \mathrm{~N}_{\mathrm{A}}$ ions of Ca^{+2}
Also $\because 111 \mathrm{~g} \mathrm{CaCl}_{2}$ has $=2 \mathrm{~N}_{\mathrm{A}}$ ions of Cl^{-}
$\therefore 222 \mathrm{~g} \mathrm{CaCl}_{2}$ has $=\frac{2 \mathrm{~N}_{\mathrm{A}} \times 222}{111}$ ions of Cl^{-}
$=4 \mathrm{~N}_{\mathrm{A}}$ ions of Cl^{-}.
Q. 7 (1)
$\because \quad 1.429 \mathrm{gm}$ of O_{2} gas occupies volume $=1$ litre.
$\therefore 32 \mathrm{gm}$ of O_{2} gas occupies $=\frac{32}{1.429}$
$=22.4$ litre $/ \mathrm{mol}$.
Q. 8 (2)

$$
\mathrm{P}_{4}+\mathrm{O}_{2} \longrightarrow \mathrm{P}_{4} \mathrm{O}_{6}+\mathrm{P}_{4} \mathrm{O}_{10}
$$

31 (g)
32 (g)
According to question weight of P is conserved so
LetMole of $\mathrm{P}_{4} \mathrm{O}_{6}=\mathrm{a}$
Mole of $\mathrm{P}_{4} \mathrm{O}_{10}=b$
Initial weight of $\mathrm{P}=$ Final weight of P .
$31=[a \times 4] \times 31+[b \times 4] \times 31$
$4 \mathrm{a}+4 \mathrm{~b}=1](1) \times 3$
Initial weight of oxygen $=$ Final weight of oxygen
$32=[\mathrm{a} \times 6] \times 16+[\mathrm{a} \times 10] \times 16$
$3 \mathrm{a}+5 \mathrm{~b}=1$]
(2) $\times 4$
$12 \mathrm{a}+20 \mathrm{~b}=4$
$12 a+12 b=3$ So $b=\frac{1}{8}$
$8 \mathrm{~b}=1$
Similarly $\quad a=\frac{1}{8}$
So weight of $\mathrm{P}_{4} \mathrm{O}_{6}=\frac{1}{8} \times 220$
$=27.5 \mathrm{P}_{4} \mathrm{O}_{10}=\frac{284}{8}=35.5$.
Q. 9 (1)
$\mathrm{I}_{2}+10 \mathrm{H} \mathrm{NO}_{3} \rightarrow 2 \mathrm{HIO}_{3}+10 \mathrm{NO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$
Moles of iodine $=\frac{5}{254}$
Moles of $\mathrm{HNO}_{3}=\frac{5}{254} \times 10$
Mass of $\mathrm{HNO}_{3}=\frac{5 \times 10}{254} \times 63=12.4 \mathrm{~g}$
Q. 10 (1)

20 g KCl present in $100-20=80 \mathrm{~g}$ of $\mathrm{H}_{2} \mathrm{O}$
Wt. of KCl in 60 g water $=\frac{20}{80} \times 60=15 \mathrm{gram}$

Q. 11 (2)

$2 \mathrm{NaCl}+\mathrm{Ag}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{AgCl}+\mathrm{Na}_{2} \mathrm{SO}_{4}$
Initially
No. of moles of $\mathrm{Ag}_{2} \mathrm{SO}_{4}=2 \times 2=4$
No. of moles of $\mathrm{NaCl}=4 \times 1$
AgCl formed $=4$ moles
No. of moles of Ag^{2+} left $=4 \times 2-4=4$
No. of moles of Cl^{-}left $=0$
No. of moles of $\mathrm{Na}^{+}=4$
No. of moles of $\mathrm{SO}_{4}^{-2}=4$

Sum of molar conc. $=\frac{12}{6}=2 \mathrm{M}$
Q. 12 (1)
$\mathrm{CaCl}_{2}+\mathrm{NaCl}=10 \mathrm{~g}$
Let weight of $\mathrm{CaCl}_{2}=\mathrm{xg}$
$\mathrm{CaCl} \rightarrow \mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}$
$1 \mathrm{~mol} 1 \mathrm{~mol} \quad 1 \mathrm{~mol}$
$\frac{\mathrm{x}}{111} \mathrm{~mol} \frac{\mathrm{x}}{111} \mathrm{~mol} \frac{\mathrm{x}}{111} \mathrm{~mol}$
Mole of $\mathrm{CaO}=\frac{1.62}{56}$
$\therefore \frac{\mathrm{x}}{111}=\frac{1.62}{56}$
$\mathrm{x}=3.21 \mathrm{~g}$
$\%$ of $\mathrm{CaCl}_{2}=\frac{3.21}{10} \times 100=32.1 \%$
Q. 13 (2)
$\begin{array}{cccc}\mathrm{P}_{4} \mathrm{~S}_{3} \\ 3 \mathrm{SO}_{2} & \underset{\text { (mass) }}{440 \mathrm{~g}} & & \rightarrow \\ & +8 \mathrm{O}_{2} & & \mathrm{P}_{4} \mathrm{O}_{10} \\ 384 \mathrm{~g}\end{array} \quad+$
$\frac{440}{220}=2$
12
(mole)
O_{2} is limiting reagent
so moles of $\mathrm{P}_{4} \mathrm{O}_{10}$ produced $=\frac{12}{8}$
mass of $\mathrm{P}_{4} \mathrm{O}_{10}$ produced $=\frac{12}{8} \times 284=426 \mathrm{~g}$
Q. 14 (1)
$3 \mathrm{Mg}+2 \mathrm{NH}_{3} \quad \rightarrow \quad \mathrm{Mg}_{3} \mathrm{~N}_{2}+3 \mathrm{H}_{2}$

48
(mass) 2
34
(mole)
Mg is limiting reagent
So moles of $\mathrm{Mg}_{3} \mathrm{~N}_{2}=\frac{2}{3}$
mass of $\mathrm{Mg}_{3} \mathrm{~N}_{2}=\frac{2}{3} \times 100=\frac{200}{3}$
Q. 15 (3)

Relative no. of atoms $\mathrm{C}: \mathrm{H}: \mathrm{O}$

$$
\frac{9}{12}: \frac{1}{1}: 0.25
$$

$$
\begin{array}{lll}
3 & 4 & 1
\end{array}
$$

Empirical formula mass $=36+4+16=56$
$\mathrm{n}=\frac{108}{50}=2$
Molecules formula $=2$ (Empirical formula)

$$
=2\left(\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{~N}\right)
$$

$$
=\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~N}_{2}
$$

Q. 16 (4)

100 kg impure sample has pure $\mathrm{CaCO}_{3}=95 \mathrm{~kg}$
$\therefore 200 \mathrm{~kg}$ impure sample has pure

$$
\mathrm{CaCO}_{3}=\frac{95 \times 200}{100}=190 \mathrm{~kg}
$$

$$
\mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}+\mathrm{CO}_{2}
$$

$\because 100 \mathrm{~kg} \mathrm{CaCO}_{3}$ gives $\mathrm{CaO}=56 \mathrm{~kg}$.
$\therefore 190 \mathrm{~kg} \mathrm{CaCO}_{3}$ gives $\mathrm{CaO}=\frac{56 \times 190}{100}$

$$
=106.4 \mathrm{~kg} .
$$

Q. 17 (1)

$\mathrm{NaH}_{2} \mathrm{PO}_{4}+\mathrm{Mg}^{2+}+\mathrm{NH}_{4}^{+} \rightarrow \mathrm{Mg}\left(\mathrm{NH}_{4}\right) \mathrm{PO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$
$\xrightarrow{\text { heated }} \mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$
Since P atoms are conserved, applying POAC for P atoms,
moles of P in $\mathrm{NaH}_{2} \mathrm{PO}_{4}=$ moles of P in $\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$
$1 \times$ moles of $\mathrm{NaH}_{2} \mathrm{PO}_{4}=2 \times$ moles of $\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$
$\left(\because 1\right.$ mole of $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ contains 1 mole of P and 1 mole of $\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ contains 2 moles of P)

$$
\begin{aligned}
& \frac{\text { wt. of } \mathrm{NaH}_{2} \mathrm{PO}_{4}}{\text { mol. wt.of } \mathrm{NaH}_{2} \mathrm{PO}_{4}} \\
= & 2 \times \frac{\text { wt. of } \mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}}{\text { mol. wt.of } \mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}} \\
& \frac{\text { wt.of } \mathrm{NaH}_{2} \mathrm{PO}_{4}}{120}=2 \times \frac{1.054}{222}
\end{aligned}
$$

Wt. of $\mathrm{NaH}_{2} \mathrm{PO}_{4}=1.14 \mathrm{~g}$.

Q. 18 (2)

$2 \mathrm{O}_{3} \rightarrow 3 \mathrm{O}_{2}$
23
x $\quad \frac{3}{2} x$
$\frac{3}{2} x-x=9$
$[29-20=9]$
$\mathrm{x}=18$
$x=90 \%\left[O_{3}\right]$
$\mathrm{O}_{2}=10 \%$
Q. 19 (1)
$\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
12
x 2 x
$x+2 x+8 x=1$
$11 \mathrm{x}=1$
$\mathrm{x}=\frac{1}{11}$
$\mathrm{CH}_{4}=\frac{1}{11}, \mathrm{X}_{\mathrm{O}_{2}}=\frac{2}{11}, \mathrm{X}_{\mathrm{N}_{2}}=\frac{8}{11}$
Q. 20 (1)
v.s. $=\mathrm{N} \times 5.6$
or $11.2=\mathrm{N} \times 5.6$
or $N=2 \mathrm{eq} / \mathrm{L}$

$$
=2 \times 17 \mathrm{~g} / \mathrm{L}
$$

$$
=34 \mathrm{~g} / \mathrm{L}
$$

$$
\begin{equation*}
=\frac{34 \mathrm{~g}}{1000 \mathrm{ml}} \times 100=3.4 \%(\mathrm{wt} / \mathrm{vol}) \tag{Q. 21}
\end{equation*}
$$

(4)

Total wt. of $\mathrm{NaOH}=30+90=120$
Total vol. of solution $=100+100=200$
$M=\frac{120}{40} \times \frac{1000}{200}=15$

JEE-ADVANCED

MCQ/COMPREHENSION/COLUMN MATCHING

Q. 1 (A,B,C)

Mole of $\mathrm{NH}_{3}=1.7=0.1$
Mole H atom $=0.3$
Total atoms $=0.4 \times 6.02 \times 10^{23}=2.408 \times 10^{23}$
$\% \mathrm{H}=\frac{3 \times 1}{17} \times 100=17.65 \%$
Q. 2 (A,B)
(A) and (B) Explanation : M. Wt. $=0.001293 \times$ $22400=28.96$
M.Wt. $=\mathrm{d} \times$ volume of 1
mole of gas at STP

$$
\text { V. D }=\frac{28.96}{2}=14.48
$$

So (A) and (B) are correct answer.
Q. 3 (A,B,C)

Let volume of solution $=1000 \mathrm{~mL}$

$$
\begin{aligned}
& {\left[\mathrm{Ba}^{2+}\right]=5 \mathrm{M} ;\left[\mathrm{Cl}^{-}\right]=10 \mathrm{M}} \\
& {\left[\mathrm{Na}^{+}\right]=10 \mathrm{M}} \\
& {\left[\mathrm{Cl}^{-}\right]=10 \mathrm{M}} \\
& 1000 \mathrm{ml} \text { solution }=1949 \mathrm{~g} \text { solution } \\
& \text { solute } \Rightarrow \mathrm{BaCl}_{2}, \mathrm{NaCl} \& \mathrm{Na}_{2} \mathrm{X} \\
& \mathrm{BaCl}_{2}=5 \mathrm{~mole}=1040 \mathrm{~g} \\
& \mathrm{NaCl}=588 \mathrm{~g} ; \mathrm{Na}_{2} \mathrm{X}=\text { mole of } \mathrm{Na}_{2} \mathrm{X} \times 142 \\
& \text { Solvent }=1949-\left(1040+588+142 \mathrm{n}_{\mathrm{Na} 2} \mathrm{X}\right) \\
& =321-142 \mathrm{n} \mathrm{Na} \\
& 2
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{m}_{\mathrm{Na} 2 \mathrm{X}}=\frac{\mathrm{n}_{\mathrm{Na}_{2} \mathrm{x}}}{321-142 \mathrm{n}_{\mathrm{Na}_{2} \mathrm{X}}} \times 1000=2 \\
& \mathrm{n}_{\mathrm{Na}_{2} \mathrm{x}}=0.5
\end{aligned}
$$

Q. 4 (B,C,D)

Mass

$$
\mathrm{C}+\underset{\substack{\mathrm{O}_{2}} \mathrm{CO}_{2}}{ }
$$

Moles

$$
\frac{27}{12} \quad \frac{88}{32}
$$

C is limiting reagent
Moles of CO_{2} produced $=$ moles of $\mathrm{C}=\frac{27}{12}=2.25$
\therefore Volume of CO_{2} at $\mathrm{STP}=2.25 \times 22.4=50.4 \mathrm{~L}$
Ratio of C and O in $\mathrm{CO}_{2}=12: 32=3: 8$
Moles of unreacted $\mathrm{O}_{2}=2.75-2.25=0.5$
\therefore Volume of unreacted O_{2} at $\mathrm{STP}=0.5 \times 22.4=$ 11.2 L
Q. 5 (A,C)
$0.5 \mathrm{xn}=\frac{216}{108}=\mathrm{mol}$ of Ag
$\mathrm{n}=4$
M.wt $=58+[165] \mathrm{n} \mathrm{g} / \mathrm{mol}=718 \mathrm{~g} / \mathrm{mol}$

Q. 6 (A,C)

Convert all the wt. in mole and use limiting reagent concept find out the mole produced of NH_{3}.
In (A) \& (C) it comes equal to 10 moles
A\& C
Q. 7 (B,C)
(i) $\mathrm{K}_{4} \mathrm{Fe}(\mathrm{CN})_{6}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow 2 \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{FeSO}_{4}+$ 6HCN

1 mole		5 mole
Limiting	$1 / 1$	$5 / 3$

reagent

$(1-1)(5-3 \times 1) 2 \times 1$	1×1	6×1
0 mole	2 mole	
2 mole		

1 mole 6 mole
Limiting reagent in step (i) is $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
(ii) $6 \mathrm{HCN}+\underset{2}{6 \text { mole (excess) }} 12 \mathrm{H}_{2} \mathrm{O} \longrightarrow \underset{0}{6 \mathrm{HCOOH}+\underset{3}{ }} \mathbf{6}$ $0 \quad 6$ mole 6 mole
(iii) (a) $6 \mathrm{NH}_{3}+\underset{6 \text { mole }}{3 \mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \underset{2 \text { mole }}{\longrightarrow} 3\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}}$

Limiting $\quad 6 / 6 \quad 2 / 3$
reagent

$$
\left(6-\frac{2}{3} \times 6\right) \quad\left(2-\frac{2}{3} \times 3\right)
$$

$\left(3 \times \frac{2}{3}\right)$

$$
\begin{array}{lll}
2 \text { mole } & 0 \text { mole } 2 \text { mole } \\
\text { (b) } 6 \mathrm{HCOOH} \xrightarrow{\mathrm{H}_{2} \mathrm{SO}_{4}} & 6 \mathrm{CO} & +6 \mathrm{H}_{2} \mathrm{O}
\end{array}
$$

6 mole	0 mole	0 mole
0 mole	6 mole	6 mole

Limiting reagent in step (i) is $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$

$$
\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}=2 \mathrm{~mol}
$$

$$
\mathrm{CO} \text { gas }=6 \mathrm{~mol}
$$

Q8 (A,B,C)
(Mw of $\mathrm{Na}_{2} \mathrm{CO}_{3}=106$, Mw of $\mathrm{HCl}=36.5$, Mw of $\mathrm{NaCl}=58.5$)

Moles of $\mathrm{Na}_{2} \mathrm{CO}_{3}=\frac{106}{106}=1.0 \mathrm{~mol}$
Moles of $\mathrm{HCl}=\frac{109.5}{36.5}=3.0 \mathrm{~mol}$
(A) Since for 1 mol of $\mathrm{Na}_{2} \mathrm{CO}_{3}, 2 \mathrm{~mol}$ of HCl is required.
So, HCl is in excess $(3-2)=1.0 \mathrm{~mol}$
Therefore, $\mathrm{Na}_{2} \mathrm{CO}_{3}$ is the limiting quantity.
(B) Weight of NaCl formed $=\left(1.0 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{CO}_{3}\right)$
$\left(\frac{2 \mathrm{~mol} \mathrm{NaCl}}{\mathrm{mol} \mathrm{Na}_{2} \mathrm{CO}_{3}}\right)\left(\frac{58.5 \mathrm{~g} \mathrm{NaCl}}{\mathrm{mol} \mathrm{NaCl}}\right)=1 \times 58.5=117.0$
g NaCl
(C) 1 mol of $\mathrm{Na}_{2} \mathrm{CO}_{3}=1 \mathrm{~mol}$ of $\mathrm{CO}_{2}=22.4 \mathrm{~L}$ at NTP

Q. 9 (A,C)

$\mathrm{CaCl}_{2} \rightarrow \mathrm{CaCO}_{3} \rightarrow \mathrm{CaO} \frac{1.12}{56}=0.02$ mole CaO
\therefore Moles of $\mathrm{CaCl}_{2}=0.02$ Mole
Mass of $\mathrm{CaCl}_{2}=0.02 \times 111=2.22 \mathrm{~g}$
$\therefore \%$ of $\mathrm{CaCl}_{2}=\frac{2.22}{4.44} \times 100=50 \%$

Q. 10 (B,D)

$\begin{array}{lcc}3 \mathrm{~A}+ & 2 \mathrm{~B} & \longrightarrow \\ \text { Initial mole } 3 & 3 & \mathrm{~A}_{3} \mathrm{~B}_{2} \\ \text { Final mole } 0 & 3-2 & 0 \\ \end{array}$
$\underset{\text { Initial mole } 1 \quad 1}{\mathrm{~A}_{3} \mathrm{~B}_{2}}+2 \mathrm{C} \longrightarrow \quad \underset{3}{\mathrm{~A}_{3} \mathrm{~B}_{2} \mathrm{C}_{2}}$

Final mole $1-\frac{1}{2} \quad 0 \quad \frac{1}{2}$
Q. 11 (A,B,D)
(A) Weight of $\mathrm{CaCO}_{3}=\left(0.22 \mathrm{~g} \mathrm{CO}_{2}\right)$
$\left(\frac{1 \mathrm{~mol} \mathrm{CO}_{2}}{44 \mathrm{~g} \mathrm{CO}_{2}}\right)\left(\frac{1 \mathrm{~mol} \mathrm{CaCO}_{3}}{\mathrm{~mol} \mathrm{CO}_{2}}\right)\left(\frac{100 \mathrm{~g} \mathrm{CaCO}_{3}}{\mathrm{~mol} \mathrm{CaCO}_{3}}\right)$
$=\frac{0.22 \times 100}{44}=0.5 \mathrm{~g} \mathrm{CaCO}_{3}$
(B) Moles of $\mathrm{CaCO}_{3}=$ moles of $\mathrm{Ca}=\left(\frac{0.22}{44}\right)=0.005$
mol
Weight of $\mathrm{Ca}=0.005 \times 40=0.2 \mathrm{~g} \mathrm{Ca}$
(D) $\%$ of $\mathrm{Ca}=\frac{0.2}{1.0} \times 100=20 \% \mathrm{Ca}$

Hence (C) is wrong.
Q. 12 (A,B,C,D)

	Silica $\mathrm{H}_{2} \mathrm{O}$		
Impurities $\%$ in original clay \Rightarrow	40	19	$100-$
$(40+19)=41$ $\%$ after partial drying \Rightarrow	a	10	$100-$

$(\mathrm{a}+10)=90-\mathrm{a}$
On heating, only water evaporates from clay, whereas silica and impurities are left as it is. Therefore, \% ratio of silica and impurities remains unchanged, i.e.
$\frac{40}{a}=\frac{41}{90-a}, \therefore \mathrm{a}=44.4 \%$
$\%$ of impurities after partial drying $=(90-\mathrm{a})=(90-$ $44.4)=45.6 \%$

Q. 13 (A,C)

Mw of $\mathrm{CaCO}_{3}=100, \mathrm{Mw}$ of $\mathrm{Na}_{2} \mathrm{CO}_{3}=106$
Mw of $\mathrm{HNO}_{3}=63 \mathrm{~g} \mathrm{~mol}^{-1}$
$\mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{CaCO}_{3} \longrightarrow \mathrm{CaCO}_{3}+2 \mathrm{NaCl}$
(a) moles of $\mathrm{CaCO}_{3}=\frac{10}{100}=0.1 \mathrm{~mol}$
moles of $\mathrm{Na}_{2} \mathrm{CO}_{3}=$ moles of $\mathrm{CaCO}_{3} \equiv 2 \times$ moles of NaCl
Weight of $\mathrm{Na}_{2} \mathrm{CO}_{3}=0.1 \times 106=10.6 \mathrm{~g}$
\% purity $\mathrm{Na}_{2} \mathrm{CO}_{3}=\frac{10.6}{21.2}=100=50 \%$
(b) wrong
(c) correct
(D) moles of $\mathrm{NaCl}=2 \times 0.1=0.2 \mathrm{~mol}$

Q. 14	A,B
Q. 15	A,B
Q. 16	(B,D $)$
	Molality of $\mathrm{Cl}^{-}=\frac{2 \times 1000 \times 2}{(1000 \times 1.09)-190}=4.44$

Q. 17 (A,B)
Q. 18 (A,C,D)
$\left[\mathrm{Mw}\right.$ of $\mathrm{KI},\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}, \mathrm{CuSO}_{4}, \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ and Al^{3+}, respectively, are, $166,132,160,250$ and $\left.27 \mathrm{~g} \mathrm{~mol}^{-1}\right]$
Q. 19 If 100 ml of $1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution is mixed with 100 ml of $9.8 \%(\mathrm{w} / \mathrm{w}) \mathrm{H}_{2} \mathrm{SO}_{4}$ solution ($\mathrm{d}=1 \mathrm{~g} / \mathrm{mL}$) then :
(A) concentration of solution remains same
(B) volume of solution become 200 mL
(C) mass of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in the solution is 98 g
(D) mass of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in the solution is 19.6 g
(A,B,D)
(A) Molarity of second solution is $=\frac{10 \times \mathrm{d} \times \mathrm{x}}{\mathrm{M}}=1$ M
(B) Volume $=100+100=200 \mathrm{~mL}$
(D) Mass of $\mathrm{H}_{2} \mathrm{SO}_{4}=\frac{200 \times 1}{1000} \times 98=19.6 \mathrm{~g}$.
Q. 20 (A,B,D)

Vml 0.1 M NaCl
$\mathrm{Vml} 0.1 \mathrm{M} \mathrm{FeCl}_{2}$
$\left[\mathrm{Na}^{+}\right]=\frac{\mathrm{V} \times 0.1}{\mathrm{~V}+\mathrm{V}}=0.05 \mathrm{M}$
$\left[\mathrm{Fe}^{2+}\right]=\frac{\mathrm{V} \times 0.1}{\mathrm{~V}+\mathrm{V}}=0.05 \mathrm{M}$
$\left[\mathrm{Cl}^{-}\right]=\frac{\mathrm{V} \times 0.1+\mathrm{V} \times 0.1 \times 2}{\mathrm{~V}+\mathrm{V}}=0.15 \mathrm{M}$

Comprehension \# 1 (Q. 21 to 23)

Q. 21 (C)
$11.2 \mathrm{~g} \mathrm{of}_{2} \Rightarrow \frac{11.2}{28}=0.4 \mathrm{~mole}$
\therefore air $=0.5$ mole $\Rightarrow 0.5 \times 22.4=11.2 \mathrm{Ltr}$ air
Q. 22 (B)

1 mole of air $\Rightarrow 0.8$ mole of $\mathrm{N}_{2}=0.8 \times 28 \mathrm{~g} \mathrm{~N}_{2}$

$$
\Rightarrow 0.2 \text { mole of } \mathrm{O}_{2}=0.2 \times 32 \mathrm{~g} \mathrm{O}_{2}
$$

$\therefore \% \mathrm{w} / \mathrm{w} \mathrm{O}_{2}=\frac{\mathrm{w}_{\mathrm{O}_{2}} \times 100}{\mathrm{w}_{\mathrm{O}_{2}}+\mathrm{w}_{\mathrm{N}_{2}}}=\frac{0.2 \times 32 \times 100}{0.2 \times 32+0.8 \times 28}=$ 22.2\%

Q. 23 (B)

Density of air at NTP
1 mole of air $=0.8$ mole $\mathrm{N}_{2}+0.2$ mole O_{2}

$$
=0.8 \times 28+0.2 \times 32=28.8 \mathrm{~g}=22.4 \mathrm{Ltr}
$$

volume.
$\mathrm{D}=\frac{\mathrm{m}}{\mathrm{V}}=\frac{22.8}{22.4}=1.2857 \mathrm{~g} / \mathrm{L}$
Comprehension \# 2 (Q. 24 to 26)
(A)
(B)
(B)

Comprehension \# 3 (Q. 27 to 29)
Q. 27 (B)
Q. 28 (C)
Q. 29 (B)

Comprehension \# 4 (Q. 30 to 31)
Q. 30 (B)
$\mathrm{x}=\frac{20 / 80}{\frac{20}{80}+\frac{30}{98}}=\frac{0.25}{0.25+0.31}=\frac{0.25}{0.56}=0.45$

Q. 31 (C)

Mass of $\mathrm{H}_{2} \mathrm{O}$ added
$=$ moles of SO_{3} in $(100 \mathrm{~g}) \times 18$
$=2 \times \frac{20}{80} \times 18$
$=4.5 \times 2=9$
Labelling $=100+9=109 \%$

Comprehension \# 5 (Q. 32 to 34)

Q. 32 (A)
$\%(\mathrm{w} / \mathrm{w})$ of $=\frac{\text { Total mass of solute }}{\text { Total mass of solution }}=$

$$
\frac{60 \times 0.4+100 \times 0.15}{60+100} \times 100=24.4 \% \text {. }
$$

Q. 33 (B)

Mass of solute $=60 \times 0.4+100 \times 0.15=24+15=$ 39 g
Mass of solvent $=160-39=121 \mathrm{~g}$
Molality $=\frac{\left(\frac{39}{58.5}\right)}{121 \times 10^{-3}}=5.509=5.5 \mathrm{~m}$.
Q. 34 (B)

Mass of solute $=39 \mathrm{~g}$
Volume of solution $=\frac{160}{1.6}=100 \mathrm{~mL}$
\therefore Molarity $=\frac{\left(\frac{39}{58.5}\right)}{100 \times 10^{-3}}=6.67 \mathrm{M}$
Q. 35 A-Q ; B-P, R ; C-P,R ; D-P
$16 \mathrm{~g} \mathrm{CH}_{4}=1$ mole of $\mathrm{CH}_{4}=5 \mathrm{~mole}$ of atoms

$$
=5 \mathrm{~N}_{\mathrm{A}}=6.023 \times 10^{23} \times
$$

5

$$
=22.4 \text { lit }(\mathrm{At} \mathrm{STP})
$$

$1 \mathrm{~g} \mathrm{H}_{2}=1 / 2$ mole of $\mathrm{H}_{2}=1 \mathrm{~mole}$ of atoms

$$
=6.023 \times 10^{23} \text { atoms }=
$$

11.2 lit
$22 \mathrm{~g} \mathrm{CO}_{2}=1 / 2$ mole of $\mathrm{CO}_{2}=3 / 2 \mathrm{~mole}$ of atoms

$$
=1 / 2 \times 6.023 \times 10^{23}
$$

atom

$$
=11.2 \text { lit (At STP) }
$$

$9 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}=1 / 2$ mole $\mathrm{H}_{2} \mathrm{O}=3 / 2$ mole of atoms

$$
=3 / 2 \times 60.03 \times 10^{23}
$$

atoms
Q. 36 (A) R, (B) P, (C) Q
$\%$ of $Y=\frac{89 \times 3}{(89 \times 3)+(5 \times 27)+(12 \times 16)} \times 100$
$=\frac{267 \times 100}{594}=44.95 \%$
$\% \mathrm{Al}=\frac{5 \times 27}{594} \times 100=22.73$
$\% \mathrm{O}=\frac{12 \times 16}{594} \times 100=32.32 \%$
Q. 37 A-Q, B-R, C-P, D-T

Initial mole 2
20
final mole $\quad(2-1=1) \quad 0$
$1 \quad 1$
Excess reagent left $=\frac{2-1}{2} \times 100=50 \%$

Volume of $\mathrm{H}_{2}=22.4$ lit.
Solid product obtained $=1$ mole
Limiting reagent is HCl .
$(\mathrm{B}) \mathrm{AgNO}_{3}(\mathrm{aq})+\mathrm{HCl} \longrightarrow \mathrm{AgCl}(\mathrm{s})+$
$\mathrm{HNO}_{3}(\mathrm{~g})$
Initial mole $\frac{170}{170}=1 \quad \frac{18.25}{36.5}=\frac{1}{2} \quad 0 \quad 0$

$$
1-\frac{1}{2}=\frac{1}{2} \quad 0 \quad \frac{1}{2} \quad \frac{1}{2}
$$

Excess reagent $=\frac{1-\frac{1}{2}}{1} \times 100=50 \%$
Volume of gas $=11.2$ lit.
Solid product $=\frac{1}{2}$ mole
Limiting reagent is HCl .
$(\mathrm{C}) \mathrm{CaCO}_{3}(\mathrm{~s}) \longrightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$

Initial mole $\frac{100}{100}=1$
0

0

1

Excess reagent not present
Volume of gas $=22.4$ lit. at STP
Solid product is 1 mole
(D) $2 \mathrm{KClO}_{3}(\mathrm{~s}) \longrightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2}(\mathrm{~g})$

Initial mole $2 / 3$
0 0 $\begin{array}{ll}0 & 2 / 3\end{array}$

No excess reagent left
Volume of gas $=44.8$ lit.
Solid product is $\frac{2}{3}$ mole.
Q. 39 (A) Q; (B) P; (C) S; (D) R
(A) 10 mole present in 1000 mL of solution 400 g in $[1000 \times 1.2]$
400 g in 1200 g
solvent $=1200-400=8000 \backslash$
1200 solution $\Rightarrow 800 \mathrm{~g}$ solved
800 solution $\Rightarrow 1200$
100 solution $=\frac{1200}{800} \times 100=150$ gram
(B) 40 g in 100 mL of solution

40 in 160 g of solution
40 g in $160-40=120 \mathrm{~g}$ solution
(C) 8×100 in 1000 g of solvent 800 g in 1000 g of solvent

$$
100 \mathrm{~g} \text { solvent }=\frac{1000}{800} \times 100=125
$$

(D) Moles of $x=0.6$

Moles of $y=0.4$
Mass of $x=0.6 \times 20=12$
Mass of $y=0.4 \times 25=10$
$12 \mathrm{xg} \Rightarrow \mathrm{y} \Rightarrow 10 \mathrm{~g}$
$120 \mathrm{x} g \Rightarrow \mathrm{y} \Rightarrow=100 \mathrm{~g}$
Q. $40 \quad(\mathrm{~A}-\mathrm{p}, \mathrm{s}) ;(\mathrm{B}-\mathrm{s}) ;(\mathrm{C}-\mathrm{p}, \mathrm{q}) ;(\mathrm{D}-\mathrm{r})$
(A) Molarity of cation $=\frac{M_{1} V_{1}+M_{2} V_{2}}{V_{1}+V_{2}}=$
$\frac{0.2 \times 100+0.1 \times 400}{500}=\frac{0.6}{5}=0.12$
Molarity of $\mathrm{Cl}^{-}=\frac{3(0.2) 100+0.1 \times 400}{500}=$
$\frac{0.6+0.4}{5}=0.2$
(B) Molarity of cation $=\frac{50 \times 0.4+0}{100}=0.2$

Molarity of $\mathrm{Cl}^{-}=\frac{0.4 \times 50+0}{100}=0.2$
(C) Molarity of cation $=\frac{2(0.2) 30+0}{100}=0.12$

$$
\text { Molarity of } \mathrm{SO}_{4}{ }^{2-}=\frac{30 \times 0.2}{100}=0.06
$$

(D) $24.5 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4}$ in 100 mL solution

Molarity $=\frac{\frac{25.4}{98}}{0.1}=2.5$
\therefore Concentration of cation $=2 \times 2.5 \mathrm{M}$
Concentration of $\mathrm{SO}_{4}{ }^{2-}=2.5 \mathrm{M}$.
Q. 41
(A - q, s); (B - p, s); (C - p, q, r); (D - q, r)
(A) $\mathrm{C}: \mathrm{H}: \mathrm{O}=\frac{51.17}{12}: \frac{13.04}{1}: \frac{34.78}{16}=4: 12: 2$ or $2: 6: 1$
\therefore Empirical formula $=\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$ \& molar mass $=46 \mathrm{~g} /$ mol
\therefore Mol formula $=\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$
$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}+3 \mathrm{O}_{2} \longrightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$
1 mole $\quad 44.8 \mathrm{~L}$ at STP
0.25 mole (11.2 L at STP)
(B) Mass of C in organic compound $=$ mass of C in
$\mathrm{CO}_{2}=\frac{0.44}{44} \times 12=0.12 \mathrm{~g}$

Mass of H in organic compound $=$ Mass of H in $\mathrm{H}_{2} \mathrm{O}$
$=\frac{0.18}{18} \times 2=0.02 \mathrm{~g}$
\therefore Mass of O in organic compound $=0.3-(0.12+$ $0.02)=0.16 \mathrm{~g}$
$\therefore \mathrm{C}: \mathrm{H}: \mathrm{O}=\frac{0.12}{12}: \frac{0.02}{1}: \frac{0.16}{16}=0.01: 0.02$:
$0.01=1: 2: 1$
\therefore Empirical formula $=\mathrm{CH}_{2} \mathrm{O}$, but it contains 2 O atom per molecule
\therefore Molecular formula $=\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$
1 mole of $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$ contains $4 \mathrm{~N}_{\mathrm{A}}$ hydrogen atoms.
$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}+2 \mathrm{O}_{2} \longrightarrow 2 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
1 mole 44.8 L
0.25 mole
11.2 L
(C) $\mathrm{C}: \mathrm{H}=42.857: 57.143$

$$
=3: x \text { (given) }
$$

On solving, $\mathrm{x}=4 \quad \therefore$ molecular formula $=\mathrm{C}_{3} \mathrm{H}_{4}$ 1 mole of $\mathrm{C}_{3} \mathrm{H}_{4}$ contains $4 \mathrm{~N}_{\mathrm{A}}$ hydrogen atoms.
Empirical formula is same as molecular formula
$\mathrm{C}_{3} \mathrm{H}_{4}+4 \mathrm{O}_{2} \longrightarrow 3 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$

$$
\mathrm{n}_{\mathrm{CO}_{2}}>\mathrm{n}_{\mathrm{H}_{2} \mathrm{O}}
$$

(D) $\mathrm{C}: \mathrm{H}=\frac{10.5}{12}: \frac{1}{1}=\frac{7}{8}: 1=7: 8 \therefore$ Empirical formula $=\mathrm{C}_{7} \mathrm{H}_{8}$
Mol wt. $=2 \times \mathrm{VD}=2 \times 46=92$
\therefore Mol formula $=$ Empirical formula $=\mathrm{C}_{7} \mathrm{H}_{8}$
$\mathrm{C}_{7} \mathrm{H}_{8}+9 \mathrm{O}_{2} \longrightarrow 7 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$

$$
\mathrm{n}_{\mathrm{CO}_{2}}>\mathrm{n}_{\mathrm{H}_{2} \mathrm{O}}
$$

NUMERICAL VALUE BASED

Q. 15

Mole of $\mathrm{SO}_{4}^{2-} 4 \times 1.25=5 \mathrm{~g}$ ion.

Q. 278

$\mathrm{C}: \mathrm{O}: \mathrm{S}=3: 2: 4$
Hydrogen is $=7.7 \%$
$\therefore 100-7.7=92.3 \%$ contains C,O \& S
$\% \mathrm{C}=\left(\frac{3}{3+2+4}\right) 92.3$;
$\% \mathrm{O}=\frac{2}{9} \times 92.3 ; \quad \% \mathrm{~S}=\frac{4}{9} \times 92.3$

Elements	$\%$	\%/ Atomic mass	Simple ratio	Simplest whole no.
H	7.7	7.7	6	6
C	30.76	$30.76 / 12=2.56$	2	2
O	20.51	$20.15 / 16=1.28$	1	1
S	41.02	$41.02 / 32=1.28$	1	1

$42 \quad \therefore$ empirical formula $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS}$
minimum molar mass $=24+6+16+32=78$
Q. $3 \quad 4$

Balanced chemical equation is
$\left.\left.4 \mathrm{nXeF}_{6}++\mathrm{CH}_{2}-\mathrm{CH}_{2}\right)_{\mathrm{n}} \longrightarrow+\mathrm{CF}_{2}-\mathrm{CF}_{2}\right)_{\mathrm{n}}+$
$4 \mathrm{nHF}+4 \mathrm{nXeF}_{4}$

$$
\mathrm{n}_{\text {teflon }}=\frac{100}{100 \mathrm{n}}=\frac{1}{\mathrm{n}}
$$

$\therefore \quad \mathrm{n}_{\mathrm{XeF}_{6}}$ required $=\frac{1}{\mathrm{n}} \times 4 \mathrm{n}=4$ moles

Q. 411

$\mathrm{A}+\frac{1}{2} \mathrm{~B}_{2} \longrightarrow \mathrm{AB}, 100 \mathrm{Kcal}$
$\mathrm{x} \quad \mathrm{x} / 2 \quad \mathrm{x}$
$\mathrm{A}+2 \mathrm{~B}_{2} \longrightarrow \mathrm{AB}_{4}, 200 \mathrm{Kcal}$
(1-x) 2(1-x) (1-x)
$100 \mathrm{x}+200(1-\mathrm{x})=140$
$200-100 \mathrm{x}=140$
$x=\frac{60}{100}=0.6$
$\mathrm{n}_{\mathrm{B}_{2}}$ used $=\frac{\mathrm{x}}{2}+2(1-\mathrm{x})=\frac{1}{2} \times 0.6+2(1-0.6)=$
$0.3+2 \times 0.4=1.1 \mathrm{~mol}$
Ans $=1.1 \times 10=11$
Q. $5 \quad 59.28$
(Atomic weight of Al and $\mathrm{Cr}=27$ and 52, M.wt. of $\mathrm{Cr}_{2} \mathrm{O}_{3}=152$)

Moles of $\mathrm{Al}=\frac{49.8 \mathrm{~g}}{27 \mathrm{~g} \mathrm{Al}}=1.84 \mathrm{~mol}$

$$
=\frac{1.84}{2}=0.92 \mathrm{~mol} \text { of } \mathrm{Cr}_{2} \mathrm{O}_{3}
$$

Moles of $\mathrm{Cr}_{2} \mathrm{O}_{3}=\frac{200 \mathrm{~g}}{152 \mathrm{~g} \mathrm{Cr}_{2} \mathrm{O}_{3}}=1.31 \mathrm{~mol}$
Since 2 mol Al is required for 1 mol of $\mathrm{Cr}_{2} \mathrm{O}_{3}$.
So, Al is the limiting reagent and $\mathrm{Cr}_{2} \mathrm{O}_{3}$ is in excess.
Moles of $\mathrm{Cr}_{2} \mathrm{O}_{3}$ is excess

$$
=(1.31-0.92)=0.39 \mathrm{~mol}
$$

Weight of excess $\mathrm{Cr}_{2} \mathrm{O}_{3}=0.39 \times 152=59.28 \mathrm{~g} \mathrm{Cr}_{2} \mathrm{O}_{3}$

Q. $6 \quad 28$

F_{2}
F_{2}
$+2 \mathrm{NaOH} \longrightarrow \frac{1}{2} \mathrm{O}_{2}+2 \mathrm{NaF}+\mathrm{H}_{2} \mathrm{O}$
Mole $50 \times 10^{3} \quad 2\left[50 \times 10^{3}\right]$
$2 \mathrm{NaF}+\mathrm{CaO}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{CaF}_{2}+2 \mathrm{NaOH}$
$2 \times\left[50 \times 10^{3}\right] \quad 50 \times 10^{3}$ Mole
Weight of lime $(\mathrm{CaO})=50 \times 10^{3} \times 56$

$$
=2800 \mathrm{~kg} .
$$

Feed amount of lime $=10,000$

$$
\% \text { Utilisation }=\frac{2800}{10,000} \times 100=28 \%
$$

Q. 72

From one mole of initial mixture, some FeO must have reacted with oxygen and got converted into $\mathrm{Fe}_{2} \mathrm{O}_{3}$.

$$
4 \mathrm{FeO}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}
$$

Initial moles

$$
\frac{3}{5} \quad \frac{2}{5}
$$

Final moles $\quad \frac{3}{5}-x \quad \frac{2}{5}+\frac{x}{2}$
But, final moles ratio is $2: 3$.

$$
\begin{array}{ll}
\therefore & \frac{\left(\frac{3}{5}-x\right)}{\left(\frac{2}{5}+\frac{x}{2}\right)}=\frac{2}{3} \\
\therefore & x=\frac{1}{4}
\end{array}
$$

$$
\therefore \quad \text { Moles of FeO reacted }=x=\frac{1}{4}
$$

$$
\therefore \quad \text { Moles of } \mathrm{O}_{2} \text { required }=\frac{1}{4}(x)=\frac{1}{16}=0.0625
$$

$$
\therefore \quad \text { Mass of } \mathrm{O}_{2} \text { required }=0.0625 \times 32=2 \mathrm{~g}
$$

Q. $8 \quad 4$
$\mathrm{n}_{\mathrm{Cl}_{2}}=\frac{112}{22.4}=5$
$n_{\mathrm{KOH}}=1 \times 10=10$

$3 \mathrm{KClO} \xrightarrow{50 \%} \quad 2 \mathrm{KCl}+\mathrm{KClO}_{3}$
$3 \quad \frac{2}{3} \times 3 \times 0.5 \quad \frac{1}{3} \times 3 \times 0.5$

$$
=1 \quad=0.5
$$

$4 \mathrm{KClO}_{3} \xrightarrow{80 \%} 3 \mathrm{KClO}_{4}+\mathrm{KCl}$
$0.5 \quad 0.8 \times \frac{0.5}{4}=0.1$
$\left(\mathrm{n}_{\mathrm{KCl}}\right)_{\text {total }}=3+1+0.1=4.1$ moles ≈ 4 moles.
Q. 950

Use POAC for carbon atom.
$\mathrm{C}+\mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2}+\mathrm{CO}$
POAC on 'C' atom, $1($ mole of C$)=1($ mole of $\left.\mathrm{CO}_{2}\right)+1($ mole of CO$)$
$\frac{240}{12}=$ mole of $\mathrm{CO}_{2}+\frac{280}{28}$
Mole of $\mathrm{CO}_{2}=20-10=10$
Mole $\%$ of $\mathrm{CO}_{2}=\frac{10}{20} \times 100=50 \%$.
Q. 1042

Let x be the mass of CaCO_{3} hence mass of MgCO_{3} $=92-\mathrm{x}$

$$
\begin{array}{cc}
\mathrm{CaCO}_{3} & +\mathrm{MgCO}_{3} \\
\frac{\mathrm{x}}{100} \downarrow & \frac{92-\mathrm{x}}{84} \downarrow \\
\mathrm{CaO}+\mathrm{CO}_{2} & \mathrm{MgO}+\mathrm{CO}_{2} \\
\frac{\mathrm{x}}{100} & \frac{92-\mathrm{x}}{84}
\end{array}
$$

mass of residue $=48 \mathrm{~g}$
$\Rightarrow \quad \frac{x}{100} \times 56+\frac{92-x}{84} \times 40=48$
$\Rightarrow \quad \frac{x}{100}+\frac{92-x}{84}=\frac{6}{7}$
$\Rightarrow \quad \mathrm{x}=50$
$\therefore \quad$ mass of $\mathrm{MgCO}_{3}=92-50=42 \mathrm{~g}$.
Q. 118

Balance the equation by any method
$4 \mathrm{Zn}+10 \mathrm{HNO}_{3} \longrightarrow 4 \mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}+3 \mathrm{H}_{2} \mathrm{O}+\mathrm{NH}_{4} \mathrm{NO}_{3}$
$\therefore \mathrm{a}+\mathrm{b}+\mathrm{c}=4+3+1=8$
Q. 1227

Let wg water in added to $16 \mathrm{~g} \mathrm{CH}_{3} \mathrm{OH}$
molality $=\frac{16 \times 1000}{W \times 32}=\frac{500}{W}$
$\frac{500}{W}=\frac{x_{A} \times 1000}{\left(1-x_{A}\right) m_{B}}=\frac{0.25 \times 1000}{0.75 \times 18}$
$\mathrm{W}=27 \mathrm{~g}$.
Q. 1318

Molarity $=\frac{10 \times 1.8 \times 98}{98}=18 \mathrm{M}$
Q. 1410

Use $\mathrm{M}=\frac{\% \text { by weight } \times 10 \times \mathrm{d}}{\mathrm{Mw}_{2}}$
$\mathrm{M}_{1} \mathrm{~V}_{1}=\mathrm{M}_{2} \mathrm{~V}_{2}$
$\frac{90 \times 10 \times 0.8}{46} \times \mathrm{V}=\frac{10 \times 10 \times 0.9}{46} \times 80$
$\mathrm{V}=10 \mathrm{~mL}$
Q. 152

Molarity of $\mathrm{HCl}=\frac{\text { Total moles of } \mathrm{HCl}}{\text { Total volume }}$
$=\frac{5 \times 2}{2+3}=2 \mathrm{M}$
Q. 164
$\mathrm{MCl}_{\mathrm{x}}+\mathrm{x} \mathrm{AgNO}_{3} \longrightarrow \mathrm{xAgCl}+\mathrm{M}\left(\mathrm{NO}_{3}\right)_{\mathrm{x}}$
$\frac{\text { Mole of } \mathrm{MCl}_{x}}{1}=\frac{\text { Mole of } \mathrm{AgNO}_{3}}{x}$
$0.1=\frac{1}{x}(0.5 \times 0.8)$
$\mathrm{x}=\frac{0.4}{0.1}=4$
Q. $17 \quad \% \mathrm{CO}_{2}=\frac{2}{2+1+2} \times 100=40 \%$.

KVPY

PREVIOUS YEAR'S

Q. 1 (B)
$0.1 \mathrm{M} \mathrm{HCl}, \mathrm{V}$ volume
H^{+}moles $=0.1 \mathrm{~V}$
$0.2 \mathrm{MH}_{2} \mathrm{SO}_{4}$, V volume
(B) H^{+}moles $=0.2 \times 2 \times \mathrm{V}=0.4 \mathrm{~V}$

Total moles of $\mathrm{H}^{+}=0.4 \mathrm{~V}+0.1 \mathrm{~V}=0.5 \mathrm{~V}$
$\left[\mathrm{H}^{+}\right]=\frac{\text { Moles }}{\text { Vol. }}=\frac{0.5 \mathrm{~V}}{2 \mathrm{~V}}=0.25 \mathrm{M} / \mathrm{L}$
Q. 2 (B)

Molarity $=\frac{\text { Moles of Solute }}{\text { Vol. of Soiution }}=\frac{0.35}{1.3}=0.269$
Q. 3 (B)
$\mathrm{KAI}\left(\mathrm{SO}_{4}\right) \mathrm{x} .12 \mathrm{H}_{2} \mathrm{O}, \mathrm{x}=2$
Q. 4 (C)
$\mathrm{Ca}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{CaO}$
$\mathrm{Ca}=\frac{20}{40}=\frac{1}{2}$ moles
CaOformed $=\frac{1}{2}$ moles
$\mathrm{w}=\frac{1}{2} \times 56=28 \mathrm{gm}$
Q. 5 (B)
3.42 gm sacrose in 100 gm solution
$\mathrm{d}=1 \mathrm{gm} \mathrm{ml}^{-1}$
$\because \mathrm{d}=\frac{\text { mass }}{\text { volume }}$
volume of solution $=\frac{100}{1}=100 \mathrm{ml}$
Molarity $=\frac{\mathrm{n}}{\mathrm{v}} \times 1000$
Molarity $=\frac{3.42}{342 \times 100} \times 1000=0.1$
Q. 6 (*)

Percentage of $\mathrm{C}_{2} \mathrm{~F}_{4}$ of Molar mass 100

$$
=\frac{1}{100} \times \frac{1}{100} \times 100=0.01 \%
$$

Percentage of $\mathrm{C}_{2} \mathrm{~F}_{4}$ of Molar mass 102

$$
=\frac{99}{100} \times \frac{99}{100} \times 100=98.01 \%
$$

Percentage of $\mathrm{C}_{2} \mathrm{~F}_{4}$ of Molar mass 101

$$
101=100-(0.01+98.01)=1.98 \%
$$

Q. 7 (D)
$\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}$
$\frac{2.4}{12}=0.2$ mole of carbon
$\therefore 0.2$ mole of C need 0.2 mole of O_{2}
So vol. of 0.2 mole $_{2}$ at $\mathrm{STP}=0.2 \times 22.4=4.48 \mathrm{~L}$
Q. 8 (C)

The correct way of reporting the average value should have exactly the same number of digit after decimal which has least digit after decimal among the data given
Q. 9 (C)
$\mathrm{C}_{4} \mathrm{H}_{8}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
$\frac{22.4 \mathrm{~L}}{22.4} \quad 89.6 \mathrm{~L} \quad 72 \mathrm{gm}$
$=1$ mole $=4$ mole $=4$ mole
$\mathrm{n}_{\mathrm{o}_{2}}$ consumed $=6$
$\therefore \mathrm{V}_{\mathrm{o}_{2}}=6 \times 22.4=134.4 \mathrm{~L}$
Q. 10 (C)
$\mathrm{M}_{\mathrm{H}_{2} \mathrm{SO}_{4}}=0.5$
$\mathrm{V}_{\mathrm{H}_{2} \mathrm{SO}_{4}}=0.2$
$\mathrm{N}_{\mathrm{H}_{2} \mathrm{SO}_{4}}=0.1$
no of mole of ' S ' atom $=0.1$
\therefore no of 's' atom $=0.1 \mathrm{~A}_{0}$
$=\frac{\mathrm{A}_{0}}{10}$
Q. 11 (C)
$2 \mathrm{Xe}+4 \mathrm{~F}_{2} \rightarrow \mathrm{XeF}_{2}+\mathrm{XeF}_{6}$
$\begin{array}{lllll}\text { Initial Mole } & 2 & 8 & 0 & 0\end{array}$
\therefore nikes if $\mathrm{Xe} \mathrm{F}_{2}$ formed $=0.5$
moles of XeF_{6} formed $=0.5$
\therefore moles ratio $=1: 1$
Q. 12 (A)
\% Nitrogen $\frac{\text { Wt of } \mathrm{N}}{\text { Wt of }\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}} \Rightarrow$
$\% \mathrm{~N}=\frac{28}{132} \times 100=21.21 \%$
Q. 13 (C)
$2 \mathrm{pb}^{2+}+2 \mathrm{ASO}_{4}^{3-} \rightarrow \mathrm{pb}_{3}\left(\mathrm{AsO}_{4}\right)_{2}$
$\mathrm{n}=\mathrm{M} \times \mathrm{V} \quad \mathrm{n}=\frac{2}{3} \times 2 \times 10^{-3}$
$=0.1 \times \frac{20}{1000}=0.00133=2 \times 10^{-3}$
$\eta_{\mathrm{AS}}=\eta_{\mathrm{ASO}_{4}^{3-}}=0.00133$
$\mathrm{W}_{\mathrm{AS}}=0.00133 \times 74.9=0.0996$
$\%$ of AS $=\frac{0.0996}{1.85} \times 100=5.4 \%$
Q. 14 (B)
$2 \mathrm{NaHCO}_{3} \xrightarrow{\Delta} \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
$\%$ of $\mathrm{C}=\frac{12}{84} \times 100=14.28 \%$
This Question can be done by checking \% of carbon 14.2% comes only in NaHCO_{3}

Q. 15 (A)

$2 \mathrm{LiOH}+\mathrm{CO}_{2} \rightarrow \mathrm{Li}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O}$
$\frac{1}{24} \quad \frac{1}{24 \times 2}$

No. of moles of $\mathrm{CO}_{2}=\frac{1}{48}$
mass of $\mathrm{CO}_{2}=\frac{1}{48} \times 44=0.916 \mathrm{~g}$
Q. 16 (B)
$\mathrm{M}+\mathrm{O}_{2} \rightarrow \mathrm{MO}$
$1.25 \quad 1.68$
$\Rightarrow \frac{1.25}{\mathrm{E}}=\frac{1.68}{\mathrm{E}+8} \Rightarrow \mathrm{E}=23.25$
n-factor $=\frac{69.7}{23.25} \approx 3$
\therefore Empirical formula $=\mathrm{M}_{2} \mathrm{O}_{3}$
Q. 17 (B)

Mav. $=\frac{\mathrm{M}_{1} \mathrm{n}_{1}+\mathrm{M}_{2} \mathrm{n}_{2}}{\mathrm{n}_{1}+\mathrm{n}_{2}}$
$35.45=\frac{35 \mathrm{n}_{1}+37 \mathrm{n}_{2}}{\mathrm{n}_{1}+\mathrm{n}_{2}}$
$\therefore \mathrm{n}_{1}: \mathrm{n}_{2}=3: 1$
Q. 18 (A)

Volume of $\mathrm{H}_{2} \mathrm{O}=250 \mathrm{ml}$,
Weight of water $=250 \mathrm{gm}$,
Number of male of $\mathrm{H}_{2} \mathrm{O}=\frac{250}{18}$
Number of molecule of $\mathrm{H}_{2} \mathrm{O}=\frac{250}{18} \times \mathrm{N}_{\mathrm{A}}=83.6 \times$ 10^{23}
Q. 19 (B)

Mole $=\frac{20.2}{20.2}=0.1 \quad$ Mole $=\frac{3.58}{42}=0.085$
$\%$ yield $=\frac{0.085}{0.1} \times 100=85 \%$
Q. 20 (D)

Sol. 0.233 gm BaSO 4 has 1 millimole BaSO_{4} and hence has 1millimole S
\therefore organic compound (X) also has 1millimole $\mathrm{S} \%$ of S in 0.102 gm of organic compound (X)
$=\frac{0.032}{0.102} \times 100=31.37 \%$

S 102 gm of this organic compound has 32 gm S
This has same \% of S
Q. 21 (C)

Q. 22 (B)

Water gas $\left(\mathrm{CO}: \mathrm{H}_{2}\right.$ is $\left.1: 1\right)=1$ litre
Air $=9$ litre
1 litre water gas at STP $\Rightarrow \frac{1}{22.4}$ moles of gas at STP
No. of moles of $\mathrm{CO}=\frac{1}{2} \times \frac{1}{22.4}$ moles.
$=$ No. of moles of CO_{2} produced after ignition $=0.022$.

JEE MAINS

PREVIOUS YEAR'S

Q. $1 \quad 129.3478 \mathrm{gm}$

Mass of Na^{+}in $50 \mathrm{ml}=70 \times 50=3500 \mathrm{mg}$
23000 mg of Na^{+}is present in 85000 mg NaNO 3
$\therefore \quad 3500 \mathrm{mg} \mathrm{Na}^{+}$will be present in $\frac{85000}{23000} \times 35000$

$$
\begin{aligned}
& =129347.8 \mathrm{mg} \\
& =129.3478 \mathrm{gm} .
\end{aligned}
$$

Q. 2 (2)

$$
\mathrm{n}_{\mathrm{co}_{2}}=\frac{2.64}{44}=0.06 \quad \mathrm{n}_{\mathrm{c}}=0.06
$$

Weight of carbon $=0.06 \times 12=0.72$ gram
$\mathrm{n}_{\mathrm{H} 2 \mathrm{O}}=\frac{1.08}{18}=0.06$
$\mathrm{n}_{\mathrm{H}}=0.06 \times 2=0.12$
Weight of $\mathrm{H}_{2}=0.12$ gram
\therefore Weight of oxygen in $\mathrm{C}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}} \mathrm{O}_{\mathrm{z}}$
$=1.8 \times 0.72-0.12$
$=0.96$ gram
$\%$ weight of oxygen $=\frac{0.96}{1.8} \times 100$
$=53.3 \%$
Q. 3243×10^{-2}
$\mathrm{Ph}-\mathrm{NH}_{2} \xrightarrow{\mathrm{Ac}_{2} \mathrm{O} \text { or } \mathrm{CH}_{3} \mathrm{COCl}, \text { Pyridine }}$

(C6H7N)
Acetanilide (C8H9NO)
1.86 g

Molar mass $=93 \quad$ Molar mass $=135$

* 93 g aniline produces 135 g acetanilide
1.86 g aniline produces $\frac{135 \times 1.86}{93}=2.70 \mathrm{~g}$
* At 90% efficiency of reaction it produces

$$
=\frac{2.70 \times 90}{100}=2.43 \mathrm{~g}
$$

Ans. 243×10^{-2}
Q. 48

$$
\mathrm{C}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}}+\left(\mathrm{x}+\frac{\mathrm{y}}{4}\right) \mathrm{O}_{2} \longrightarrow \mathrm{XCO}_{2} \mathrm{c}\left(\frac{\mathrm{y}}{2}\right) \mathrm{H}_{2} \mathrm{O}(\ell)
$$

Volume-Volume V 6V 4V
Analysis

$$
\frac{\mathrm{V}_{\mathrm{C}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}}}}{1}=\frac{\mathrm{V}_{\mathrm{CO}_{2}}}{\mathrm{x}}
$$

$$
\frac{\mathrm{v}}{1}=\frac{4 \mathrm{v}}{\mathrm{x}} \quad \mathrm{x}=4
$$

$$
\frac{\mathrm{V}_{\mathrm{C}_{x} \mathrm{H}_{\mathrm{y}}}}{1}=\frac{\mathrm{V}_{\mathrm{O}_{2}}}{\mathrm{x}+\frac{\mathrm{y}}{4}}
$$

$$
\frac{V}{1}-\frac{6 V}{x+\frac{y}{4}}
$$

$x+\frac{y}{4}=6$
$4+\frac{y}{4}=6$
$\frac{y}{4}=8$
$y=8$
Formula $\mathrm{C}_{4} \mathrm{H}_{8}$
Q. 5 (18)
$\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow 3 \mathrm{H}_{2} \mathrm{O}$
$0.1 \quad 0.3=0.3 \times 6 \times 10^{23}=18 \times 10^{22}$
mol mol
No. of molecules $=0.3 \times 6.023 \times 10^{23}$
$=18.069 \times 10^{22}$
Q. 6 (16)

$\frac{\mathrm{x}}{74}$ mol $\quad \frac{\mathrm{x}}{74} \times 0.64=\frac{7.8}{56}$
$\mathrm{x}=16.10$
; 16.00
Q.7(77)

1 mole
$=140.5 \mathrm{gm}$
1 mole
$=169 \mathrm{gm}$
1 mole
$=273 \mathrm{gm}$
$\therefore 0.140 \mathrm{gm} \frac{169}{140.5} \times 0.140$
L.R. $=0.168 \mathrm{gm}<0.388 \mathrm{gm}$
excess
\therefore Theoretical amount of given product formed
$=\frac{273}{140.5} \times 0.1400 .272 \mathrm{gm}$
But its actual amount formed is 0.210 gm .
Hence, the percentage yield of product.
$=\frac{0.210}{0.272} \times 10077.2077$
OR

Mole of $\mathrm{Ph}-\mathrm{CoCl}=\frac{0.140}{140}=10^{-3} \mathrm{~mol}$
Mole of $\stackrel{\mathrm{O}}{\mathrm{Ph}-\mathrm{C}-\mathrm{N}(\mathrm{Ph})_{2}}$, that should be obtained
by mol-mol analysis $=10^{-3} \mathrm{~mol}$.
Theoritical mass of product $=10^{-3} \times 273=273 \times$ $10^{-3} \mathrm{~g}$
Observed mass of product $=210 \times 10^{-3} \mathrm{~g}$
$\%$ yield of product $=\frac{210 \times 10^{-3}}{273 \times 10^{-3}} \times 100=76.9 \%=77$
Q. 8 (1)
$\mathrm{PV}=\mathrm{nRT}$
$1.0 \times \frac{20}{1000}=\frac{\mathrm{N}}{6.023 \times 10^{23}} \times 0.083273$
\therefore Number of Cl_{2} molecules, $\mathrm{N}=5.3 \times 10^{20}$
Hence, Number of Cl -atoms $=1.06 \times 10^{21}$
$\approx 1 \times 10^{21}$
Q. 9 (80)

But actual amount of nitrobenzene formed is 4.92 gm and hence.

Percentage yield $=\frac{4.92}{6.15} \times 100=80 \%$
Q. 10 (525)
$3 \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3} \rightarrow 3 \mathrm{PbSO}_{4}+2 \mathrm{Cr}\left(\mathrm{NO}_{3}\right)_{3}$
$35 \mathrm{ml} \quad 20 \mathrm{ml}$
$0.15 \mathrm{M} \quad 0.12 \mathrm{M}$
$=5.25 \mathrm{~m} . \mathrm{mol}=2.4 \mathrm{~m} . \mathrm{mol} 5.25 \mathrm{~m} . \mathrm{mol}$
$=5.25 \times 10^{-3} \mathrm{~mol}$
therefore moles of PbSO_{4} formed $=5.25 \times 10^{-3}$
$=525 \times 10^{-5}$
Q. 11 (3)
$\mathrm{H}_{3} \mathrm{PO}_{3}+2 \mathrm{NaOH} \rightarrow \mathrm{Na}_{2} \mathrm{HPO}_{3}+2 \mathrm{H}_{2} \mathrm{O}$
50 ml 1 M
$1 \mathrm{M} \quad \mathrm{V}=$?
$\Rightarrow \frac{\mathrm{n}_{\mathrm{NaOH}}}{\mathrm{n}_{\mathrm{N}_{3} \mathrm{PO} 3}}=\frac{2}{1}$
$\Rightarrow \frac{1 \times \mathrm{V}}{50 \times 1}=\frac{2}{1} \mathrm{~V}_{\mathrm{Na} O \mathrm{H}}=100 \mathrm{ml}$
$\mathrm{H}_{3} \mathrm{PO}_{2}+2 \mathrm{NaOH} \rightarrow \mathrm{NaH}_{2} \mathrm{PO}_{3}+\mathrm{H}_{2} \mathrm{O}$
100 ml 1 M
$2 \mathrm{M} \quad \mathrm{V}=$?
$\Rightarrow \frac{\mathrm{n}_{\mathrm{NaoH}}}{\mathrm{n}_{\mathrm{H}_{3} \mathrm{PO} 3}}=\frac{1}{1} \Rightarrow \frac{1 \times \mathrm{V}}{2 \times 100}=\frac{1}{1} \mathrm{~V}_{\mathrm{NaOH}}=200 \mathrm{ml}$
Q. 12 (3)
$44 \mathrm{gm} \mathrm{CO}_{2}$ have 12 gm carbon
So, $420 \mathrm{gm} \mathrm{CO}_{2} \Rightarrow \frac{12}{44} \times 420$
$\Rightarrow \frac{1260}{11}$ gmcarbon
$\Rightarrow 114.545$ gram carbon
So, $\%$ of carbon $=\frac{114.545}{750} \times 100$

; 15.3\%

$18 \mathrm{gm} \mathrm{H}_{2} \mathrm{O} \Rightarrow 2 \mathrm{gm} \mathrm{H}_{2}$
$210 \mathrm{gm} \Rightarrow \frac{2}{18} \times 210$
$=23.33 \mathrm{gm} \mathrm{H}_{2}$
So, $\% \mathrm{H} \Rightarrow \frac{23.33}{750} \times 100=3.11 \% \approx 3 \%$
Q. 13 (3)
Q. 14 (1)
Q. 15 (226)
Q. 16 [4]
Q. 17 (2)

JEE-ADVANCED

PREVIOUS YEAR'S
Q. 1 (3)

Average titre value $=\frac{25.2+25.25+25.0}{3}=\frac{75.45}{3}$
$=25.15=25.2 \mathrm{~mL}$
number of significant figures will be 3 .
Q. 2 (5)

The balance chemical equation is
$3 \mathrm{Br}_{2}+3 \mathrm{Na}_{2} \mathrm{CO}_{3} \longrightarrow 5 \mathrm{NaBr}+\mathrm{NaBrO}_{3}+3 \mathrm{CO}_{2}$
Q. 3 (C)

Mole $=\frac{120}{60}=2$
mass of solution $=1120 \mathrm{~g}$
$\mathrm{V}=\frac{1120}{1.15 \times 1000}=\frac{112}{115} \mathrm{~L}$
$\mathrm{M}=\frac{2 \times 115}{112}=2.05 \mathrm{~mol} / \mathrm{litre}$
Q. 4 (8)
$29.2 \%(\mathrm{w} / \mathrm{w}) \mathrm{HCl}$ has density $=1.25 \mathrm{~g} / \mathrm{ml}$
Now, mole of HCl required in $0.4 \mathrm{M} \mathrm{HCl}=0.4 \times 0.2$ mole $=0.08$ mole
if v mol of orginal HCl solution is taken then volume of solution $=1.25 \mathrm{v}$
mass of $\mathrm{HCl}=(1.25 \mathrm{v} \times 0.292)$

$$
\text { mole of } \mathrm{HCl}=\frac{1.25 \mathrm{v} \times 0.292}{36.5}=0.08
$$

so, $v=\frac{36.5 \times 0.08}{0.29 \times 1.25} \mathrm{~mol}=8 \mathrm{~mL}$
Q. 5
(8)

Given 3.2 M solution
\therefore moles of solute $=3.2 \mathrm{~mol}$
Consider 1 L Solution.
\therefore volume of solvent $=1 \mathrm{~L}$
$\mathrm{P}_{\text {solvent }}=0.4 \mathrm{~g} . \mathrm{mL}^{-1}$
$\therefore \mathrm{m}_{\text {solvent }}=\mathrm{P} \times \mathrm{V}=400 \mathrm{~g}$
\therefore molality $=\frac{3.2 \mathrm{~mol}}{0.4 \mathrm{~kg}}=8 \mathrm{molal}$
Q. 6 (9)

Given, molality = Molarity
And assuming no volume change in forming solution Density of solvent $=1 \mathrm{gml}^{-1}$
And density of solution (given) $=2 \mathrm{gml}^{-1}$
Implies, solvent and solute are present in equal qualities
$\therefore \chi_{\text {solute }}=0.1=\frac{\frac{1}{M_{\text {solute }}}}{\frac{1}{M_{\text {solvent }}}+\frac{1}{M_{\text {solute }}}} \Rightarrow \frac{M_{\text {solute }}}{m_{\text {solvent }}}=9$
Q. 7 (6)
$8 \mathrm{KMnO}_{4}+3 \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+\mathrm{H}_{2} \mathrm{O}!!8 \mathrm{MnO}_{2}+3 \mathrm{Na}_{2} \mathrm{SO}_{4}+$
$3 \mathrm{~K}_{2} \mathrm{SO}_{4}+2 \mathrm{KOH}$
No. of sulphur containing products is $3+3=6$
Q. 8 (2992)

$\left.\underset{952 \mathrm{~g}=4 \mathrm{~mol}}{\mathrm{NiCl}_{2}} \cdot 6 \mathrm{H}_{2} \mathrm{O}+\underset{24 \mathrm{~mol}}{6 \mathrm{NH}_{3}} \rightarrow \underset{\substack{(\mathrm{M}=232) \\ 4 \mathrm{~mol}}}{\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right.}\right] \mathrm{Cl}_{2}+6 \mathrm{H}_{2} \mathrm{O}$
Total mass $=12 \times 172+4 \times 232=2992 \mathrm{~g}$
Q. $9 \quad$ (2.98 or 2.99)

$$
\begin{aligned}
& \mathrm{X}_{\text {urea }}= 0.05=\frac{\mathrm{n}}{\mathrm{n}+50} \\
& 19 \mathrm{n}=50 \\
& \quad \mathrm{n}=2.6315 \\
& \mathrm{~V}_{\text {sol }}=\frac{(2.6315 \times 60+900)}{1.2}=881.5789 \mathrm{ml}
\end{aligned}
$$

Molarity $=\frac{2.6315 \times 1000}{881.5789}=2.9849$
Molarity $=2.98 \mathrm{M}$
Q. 10 (6.15)
$2 \mathrm{Al}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+3 \mathrm{H}_{2}$
Moles of Al takes $=\frac{5.4}{27}=0.2$
moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$ taken $=\frac{50 \times 5.0}{1000}=0.25$
As $\frac{0.2}{2}>\frac{0.25}{3}, \mathrm{H}_{2} \mathrm{SO}_{4}$ is limiting reagent
Now, moles of H_{2} formed $=\frac{3}{3} \times 0.25=0.25$
\therefore Volume of H_{2} gas formed $=\frac{\mathrm{nRT}}{\mathrm{P}}$
$=\frac{0.25 \times 0.082 \times 300}{1}=6.15 \mathrm{~L}$

States of Matter

Elementary

EXERCISES-I

Q. 1 (3)

Boyle's law is $V \propto \frac{1}{P}$ at constant T
Q. 2 (4)

PV $=\mathrm{RT}=\mathrm{K}$ (Constant) (Boyle’s law)
Taking log both side
$\log \mathrm{P}+\log \mathrm{V}=\log \mathrm{k}$
$\log \mathrm{P}=-\log \mathrm{V}+$ constant
$y=m x+c$
so

Q. 3 (1)
$P=\frac{n R T}{V}=\frac{2 \times 0.0821 \times 546}{44.81}=2 \mathrm{~atm}$.
Q. 4 (3)
Q. 5 (2)

Molecular weight $=$ V.d. $\times 2=11.2 \times 2=22.4$
Volume of 22.4 gm Substance of NTP $=22.4$ litre
1 gm substance at $\mathrm{NTP}=\frac{22.4}{22.4}$ litre
11.2 gm substance of NTP $=11.2$ litre

> (3)

Initial $\mathrm{N}_{2}+3 \mathrm{H}_{2} \longrightarrow 2 \mathrm{NH}_{3}$
final
2

$$
\text { ratio }=\frac{4}{2}=\frac{2}{1} .
$$

Q. 7 (4)
Q. 8 (1)

$$
r_{g}=\frac{1}{5} \cdot r_{H_{2}}
$$

$\frac{M_{g}}{M_{\mathrm{H}_{2}}}=\left[\frac{r_{\mathrm{H}_{2}}}{r_{g}}\right]^{2}=(5)^{2}=25 ; M_{g}=2 \times 25=50$
Q. 9 (3)

$$
d \propto M \Rightarrow \frac{d_{1}}{d_{2}}=\frac{M_{1}}{M_{2}} ; \frac{3 d}{d}=\frac{M}{M_{2}} ; M_{2}=\frac{M}{3} .
$$

Q. 10 (1)

$$
\begin{aligned}
V_{r m s} & =\sqrt{\frac{3 R T}{M}}, V_{a v}=\sqrt{\frac{8 R T}{\pi M}} ; \frac{V_{r m s}}{V_{a v}}=\sqrt{\frac{3 \pi}{8}} \\
& =\sqrt{\frac{66}{56}} \Rightarrow \frac{1.086}{1}
\end{aligned}
$$

Q. 11 (3)
Q. 12 (1)

$$
V_{a v}: V_{r m s}: V_{\text {most probable }}=V: U: \alpha
$$

$\sqrt{\frac{8 R T}{\pi M}}: \sqrt{\frac{3 R T}{M}}: \sqrt{\frac{2 R T}{M}}$
$\alpha: V: U=\sqrt{2}: \sqrt{\frac{8}{\pi}}: \sqrt{3}$
$=1: 1.128: 1.224$

EXERCISES-II

JEE-MAIN

OBJECTIVE QUESTIONS
Q. 1 (3)
$\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}=\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}$
Q. 2 (4)
n, $\mathrm{T} \rightarrow$ const
$\mathrm{PV}=$ const
Q. 3 (4)
$\mathrm{n} \rightarrow$ constant
$\mathrm{v} \rightarrow$ fixed
$\therefore \mathrm{P} \& \mathrm{~T} \rightarrow$ const
Q. 4 (2)
$\mathrm{V}=2$ litre
$\frac{v_{1}}{v_{2}}=\frac{T_{1}}{T_{2}}$
$\Rightarrow \frac{2}{4}=\frac{273}{\mathrm{~T}(\mathrm{inK})}$
$\Rightarrow \mathrm{T}=546 \mathrm{~K} \Rightarrow \mathrm{~T}=273^{\circ} \mathrm{C}$
Q. 5 (2)
$n_{1}+n_{2}=n_{f} \quad \frac{P V}{R T}=n$
$\frac{1000 \times 500}{R T}+\frac{800 \times 1000}{R T}=\frac{P_{f} \times 2000}{R T}$ $\mathrm{P}_{\mathrm{f}}=650$ torr.
Q. 6
(2)
$\mathrm{n}=$ const.
no of molecules $=$ const
same number of molecules
Q. 7 (A)

Two flask initally at 27° and 0.5 atm , have same volume and 0.7 mole thus each flask has 0.35 mole
Let n mole of gas are diffuse from II to I on heating the flask at $127^{\circ} \mathrm{C}$
Mole in I flask $=0.35+\mathrm{n}$, Mole in II flask $=0.35-\mathrm{n}$ If new pressure of flask is P then
for I flask $\mathrm{P} \times \mathrm{V}=(0.35+\mathrm{n}) \times \mathrm{R} \times 300$; for II flask P $\times \mathrm{V}=(0.35-\mathrm{n}) \times \mathrm{R} \times 400 \mathrm{n}=0.5$
mole in I flask $=0.40 \mathrm{~mole}$ in II flask $=0.30$
$0.5 \times 2 \mathrm{~V}=0.7 \times 0.0821 \times 300$ (initially) $\mathrm{V}=17.24$ Lt.
$\mathrm{P} \times 17.24=0.30 \times 0.0821 \times 400$ (finally) $\mathrm{P}=0.57$ atm.
Q. 8 (3)
$\frac{10}{V_{2}}=\frac{273}{373}$
Q. 9 (3)
$\mathrm{P}=\mathrm{CRT} ; \mathrm{T}=\frac{\mathrm{P}}{\mathrm{RC}}=\frac{1 \times 12}{1 \times 1}=12 \mathrm{~K}$.
Q. 10 (1)
$\frac{15}{30}=\frac{75}{M_{B}}$
$M_{B}=150 .(\text { V.D. })_{B}=\frac{150}{2}=75$.
Q. 11 (4)

R is depend upon unit of measurement
Q. 12 (3)

$P V=\frac{W}{M M} R T$
$\Rightarrow P \times M_{m}=\rho R T$
$\frac{P_{A} \times M M_{A}=\rho_{A} R T}{P_{B} \times M M_{B}=\rho_{B} R T}$
$\frac{\mathrm{P}_{\mathrm{A}}}{\mathrm{P}_{\mathrm{B}}} \times \frac{1 / 2 \mathrm{MM}_{\mathrm{B}}}{\mathrm{MM}_{\mathrm{B}}}=\frac{3}{1.5}$
$\frac{P_{A}}{P_{B}}=4$ Ans.
Q. 13 (2)
$\mathrm{PV}=\mathrm{nRT}$
$\frac{\mathrm{P}_{1} \mathrm{~V}_{1}=n R T_{1}}{\mathrm{P}_{2} \mathrm{~V}_{2}=\mathrm{nRT} T_{2}}$
$\Rightarrow \frac{\mathrm{P}}{2 \mathrm{P}} \times \frac{5}{\mathrm{~V}_{2}}=\frac{300}{600} \Rightarrow \mathrm{~V}_{2}=5$ litre
Q. 14 (1)

$$
\begin{array}{ll}
P_{i}=x \text { atm } & n, V \rightarrow \text { const } \\
P_{f}=x+\frac{0.4}{100} x & \\
\frac{P_{1}}{P_{2}}=\frac{T_{1}}{T_{2}} & \\
T_{i}=T & \Rightarrow \\
\frac{x}{x+\frac{0.4}{100} x}=\frac{T}{T+1} & T_{f}=T+1
\end{array}
$$

$T=250 K$
Q. 15 (C)
$\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}$
$\frac{3}{320}=\frac{2.7}{\mathrm{~T}_{2}}$
$\Rightarrow \mathrm{T}_{2}=288 \mathrm{~K}=15^{\circ} \mathrm{C}$

Q. 16 (2)

$\rho \propto \frac{P}{T}$.
Q. 17 (A)

P,T,V \rightarrow const
$\mathrm{n}_{\mathrm{SO}_{2}} \rightarrow \mathrm{nO}_{2}$
$\therefore \mathrm{WO}_{2}=\frac{1}{2} \mathrm{WSO}_{2}$

Q. 18 (C)

P,n \rightarrow const
$\frac{V_{1}}{V_{2}}=\frac{T_{1}}{T_{2}}$
$\Rightarrow \frac{10 \mathrm{Lt}}{\mathrm{V}_{2}}=\frac{273}{373}$
$\Rightarrow \mathrm{sV}_{2}=13.66 \mathrm{Lt}$.
Q. 19 (4)

$$
\frac{\mathrm{p}_{\mathrm{H}_{2}}}{\mathrm{p}_{\mathrm{C}_{2} \mathrm{H}_{6}}}=\frac{\mathrm{n}_{\mathrm{H}_{2}}}{\mathrm{n}_{\mathrm{C}_{2} \mathrm{H}_{6}}}=\frac{30}{2}=\frac{15}{1} .
$$

Q. 20 (4)

Weight of $\mathrm{H}_{2}=20 \mathrm{~g}$ in 100 g mixture ; Weight of O_{2} $=80 \mathrm{~g}$
\therefore Moles of $\mathrm{H}_{2}=\frac{20}{2}=10$;
\therefore Moles of $\mathrm{O}_{2}=\frac{80}{32}=\frac{5}{2}$
\therefore Total moles $=10+\frac{5}{2}=\frac{25}{2}$
$\therefore \mathrm{P}_{\mathrm{H}_{2}}^{\prime}=\mathrm{P}_{\mathrm{T}} \times$ mole fraction of $\mathrm{H}_{2}=1 \times \frac{10}{25 / 2}=0.8$ bar
Q. 21 (B)

Since A and A_{2} are two states in gaseous phase having their wt ratio 50% i.e. $1: 1$
moles of $\mathrm{A}=\frac{96}{2} \times \frac{1}{48}=1$ Moles of $\mathrm{A}_{2}=\frac{96}{2} \times \frac{1}{96}=\frac{1}{2}$
Total mole $=3 / 2$
$\mathrm{P}=\mathrm{nRT} / \mathrm{V}$.
Q. 22 (1)
$\mathrm{P}=\mathrm{XP}_{\mathrm{T}}$
$\frac{P_{1}}{P_{2}}=\frac{3 / 10 P_{T}}{2 / 9 P_{T}}$
$=\frac{P_{1}}{P_{2}}=\frac{2.7}{2}$
$\Rightarrow \frac{P_{1}-P_{2}}{P_{1}} \times 100=\frac{\frac{2.7}{2} P_{2}-P_{2}}{P_{2}} \times 100$
$\Rightarrow 26$ \%

Partial pressure of O_{2} is changed by about 26%
Q. 23 (C)

Initial $\mathrm{N}_{2}+3 \mathrm{H}_{2} \longrightarrow 2 \mathrm{NH}_{3}$
13
final - - 2 ratio $=\frac{4}{2}=\frac{2}{1}$.
Q. 24 (4)
$r \propto \frac{1}{\sqrt{M}}$
Q. 25 (2)
$\frac{20}{60} \times \frac{30}{V}=\sqrt{\frac{32}{64}}$.
Q. 26 (3)
$r \propto \frac{1}{\sqrt{M}}$
So NH_{3} diffuses with faster rate.
Q. 27 (2)
$\frac{r_{1}}{r_{2}}=\frac{t_{2}}{5}=\sqrt{\frac{M_{2}}{2}}$
Q. 28 (4)

Given $\frac{r_{A}}{r_{B}}=\frac{16}{3} ; \frac{w_{A}}{w_{B}}=\frac{2}{3}$
we have $\frac{r_{A}}{r_{B}}=\frac{n_{A}}{n_{B}} \sqrt{\frac{M_{B}}{M_{A}}}$
$\frac{16}{3}=\frac{w_{A}}{M_{A}} \frac{M_{B}}{w_{B}} \sqrt{\frac{M_{B}}{M_{A}}}$
$\frac{16}{3}=\frac{2}{3}\left(\frac{M_{B}}{M_{A}}\right)^{3 / 2} \Rightarrow\left(\frac{M_{B}}{M_{A}}\right)^{3 / 2}=8$
$\Rightarrow \frac{\mathrm{M}_{\mathrm{B}}}{\mathrm{M}_{\mathrm{A}}}=4$
\therefore mole ratio $=\frac{8}{3}$
Q. 29 (2)
$\frac{r_{x}}{r_{y}}=\sqrt{\frac{d_{y}}{d_{x}}} \Rightarrow \frac{3}{1}=\sqrt{\frac{d y}{d x}}$
$\frac{d y}{d x}=3^{2}=\frac{9}{1}$ Ans.
Q. 30 (1)
$\frac{r_{\mathrm{N}_{2}}}{\mathrm{r}_{\mathrm{H}_{2}}}=\sqrt{\frac{\mathrm{MM}}{\mathrm{H}_{2}}} \mathrm{MM}_{\mathrm{N}_{2}}$
$=\sqrt{\frac{2}{28}}=\sqrt{\frac{1}{14}}$
$1: \sqrt{14}: \sqrt{7}$
Q. 31 (4)
$\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O} \longrightarrow \mathrm{CO}_{2}$ $3 \times \mathrm{nC}_{3} \mathrm{H}_{6} \mathrm{O}=\mathrm{nCO}_{2}$
Q. 32 (2)

$$
\frac{u_{1}}{u_{2}}=\sqrt{\frac{T_{1} \times M_{2}}{T_{2} M_{1}}}
$$

Q. 33 (B)
$V=\sqrt{\frac{3 P}{d}}$
Q. 34 (1)
$\mathrm{m}_{\mathrm{A}}=2 \mathrm{~m}_{\mathrm{B}}$
$\mathrm{u}_{\mathrm{A}}=2 \mathrm{u}_{\mathrm{B}}$
$\mathrm{n}_{\mathrm{A}}=\mathrm{n}_{\mathrm{B}}$
$\mathrm{v}_{\mathrm{A}}=\mathrm{v}_{\mathrm{B}}$
$\frac{\mathrm{P}_{\mathrm{A}} \mathrm{V}_{\mathrm{A}}}{\mathrm{P}_{\mathrm{B}} \mathrm{V}_{\mathrm{B}}}=\frac{\frac{1}{3} \mathrm{~m}_{\mathrm{A}} \mathrm{n}_{\mathrm{A}} \mathrm{u}_{\mathrm{A}}^{2}}{\frac{1}{3} \mathrm{~m}_{\mathrm{B}} \mathrm{n}_{\mathrm{B}} \mathrm{u}_{\mathrm{B}}^{2}}$
Q. 35 (A)
$K . \mathrm{E}_{\mathrm{O}_{2}}=\frac{\frac{3}{2} \times \frac{\mathrm{N}}{32} \times \mathrm{R} \times 150}{\frac{3}{2} \times \frac{\mathrm{N}^{\prime}}{32} \times \mathrm{R} \times 300}=\frac{\mathrm{x}}{2 \mathrm{x}}$
$\Rightarrow K . \mathrm{E}_{\mathrm{O}_{2}}=\frac{\mathrm{N} \times 1}{\mathrm{~N} \times 2}=\frac{1}{2}$
$\mathrm{N}=\mathrm{N}^{\prime}$ Therefore, (A) option is correct.

Q. 36 (B)

Average KE $=\frac{3}{2} \times \frac{8.314 \times 300}{6.023 \times 10^{23}}=6.21 \times 10^{-21} \mathrm{~J} /$ molecule
Q. 37 (D)
K.E. $=\frac{3}{2} n R T$
Q. 38 (2)
$\mathrm{v} \propto \sqrt{\mathrm{T}}$
Q. 39 (3)
$\frac{\left(V_{\text {rms }}\right)_{1}}{\left(V_{\text {rms }}\right)_{2}}=\sqrt{\frac{T_{1} M_{2}}{M_{1} T_{2}}}$
Q. 40 (1)
K.E. $=3 / 2 \mathrm{nRT}$
$\mathrm{n}_{1} \mathrm{~T}_{1}=\mathrm{n}_{2} \mathrm{~T}_{2}$
$\mathrm{T}_{1}=\frac{0.4 \times 400}{0.3}$
$\mathrm{T}_{1}=533 \mathrm{~K}$
Q. 41 (3)
$U_{r m s}=\sqrt{\frac{3 R T}{M}}=\frac{5 \times 10^{4}}{10 \times 10^{4}}$
$=\frac{\sqrt{\frac{3 R T_{1}}{M}}}{\sqrt{\frac{3 R T_{2}}{M}}}=\frac{1}{4}=\frac{T_{1}}{T_{2}}$
$\mathrm{T}_{2}=4 \mathrm{~T}$
$\mathrm{T}_{2}=4$ times T_{1}
Q. 42 (B)
$\frac{5 \times 10^{4}}{10 \times 10^{4}}=\frac{\sqrt{\frac{3 R T_{1}}{M}}}{\sqrt{\frac{3 R T_{2}}{\mathrm{M}}}}$
$\mathrm{T}_{1}=4 \mathrm{~T}_{2}$
If T_{1} is 4 times
by heating the gas, pressure is made four times.
Q. 43 (2)
$U_{\mathrm{ms}}=\sqrt{\frac{3 R T}{M}}$
$\frac{T_{1}}{M_{1}}=\frac{T_{2}}{M_{2}}$
$\frac{T_{1}}{32}=\frac{300}{20}$
$\mathrm{T}_{1}=480 \mathrm{~K}$
Q. 44 (B)
$U_{\text {rms }}=\sqrt{\frac{3 R T}{M}}=\sqrt{\frac{3 P V}{M}}=\sqrt{\frac{3 \times 1.2 \times 10^{5}}{4}}$
$=300 \mathrm{~ms}$
Q. 45 (A)
H_{2} gas will be having longest mean-free path.
Q. 46 (B)
$\mathrm{C}_{x} \mathrm{H}_{\mathrm{y}}+\mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{x} \times \mathrm{n}_{\mathrm{Cx}} \mathrm{H}_{\mathrm{y}}=\mathrm{n}_{\mathrm{CO}_{2}}$
(POAC on C)
$x \times 500=2500(x=5)$
$\mathrm{y} \times \mathrm{nCx} \mathrm{H}_{\mathrm{y}}=2 \times \mathrm{n}_{\mathrm{H}_{2} \mathrm{O}}(\mathrm{POAC}$ on H$)$
$y \times 500=2 \times 3000 \quad y=12$
Formula $=\mathrm{C}_{5} \mathrm{H}_{12}$
Q. 47 (A)
$\mathrm{C}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}}+\mathrm{O}_{2} \longrightarrow \mathrm{x}_{\mathrm{CO}_{2}}+\frac{\mathrm{y}}{2}+\mathrm{H}_{2} \mathrm{O}$
$15 \mathrm{ml} \quad \frac{357 \times 21}{100} \mathrm{ml} \quad 75 \mathrm{ml}$
$\left(x+\frac{y}{4}\right) \times 15=75 x+\frac{y}{4}=\frac{75}{15}$
$x+\frac{y}{4}=5 x+\frac{y}{4}=5$
$3+\frac{y}{4}=515 x+15 x+282=327$
$y=8 \quad x=3$
Formula $=\mathrm{C}_{3} \mathrm{H}_{8}$
Q. 48 (B)
$\mathbf{C}_{x} \mathrm{H}_{\mathrm{y}}+\left(\mathrm{x}+\frac{\mathrm{y}}{4}\right) \mathrm{O}_{2} \longrightarrow \mathrm{XCO}_{2}+\frac{\mathrm{y}}{2} \mathrm{H}_{2} \mathrm{O}$
7.5 ml

36 ml
$36-7.5\left(x+\frac{y}{4}\right)+7.5 x=28.5$
$36-7.5\left(15+\frac{y}{4}\right)+7.5 x=28.5$
$\mathrm{y}=4$
$\mathrm{x}=2$
So formula $=\mathrm{C}_{2} \mathrm{H}_{4}$
Q. 49 (2)
$\mathrm{C}_{x} \mathrm{H}_{\mathrm{y}}+\left(\mathrm{x}+\frac{\mathrm{y}}{4}\right) \mathrm{O}_{2} \longrightarrow \mathrm{xCO}_{2}+\frac{\mathrm{y}}{2} \mathrm{H}_{2} \mathrm{O}$
$\frac{x+\frac{y}{4}}{x}=\frac{7}{4}$
$\frac{y}{4 x}=\frac{3}{4} \frac{y}{x}=\frac{3}{1}$
Q. $50 \quad \mathrm{C}_{4} \mathrm{H}_{10}+\frac{13}{2} \mathrm{O}_{2} \longrightarrow 4 \mathrm{CO}_{2}+5 \mathrm{H}_{2} \mathrm{O}$
x ml
y ml
n-butane
isobutane
Volume of $\mathrm{O}_{2}=\mathrm{x} \times \frac{13}{2}+\mathrm{y} \times \frac{13}{2}$
Q. 51 (1)
$\mathrm{T}_{\mathrm{C}}=\frac{8 \mathrm{a}}{27 \mathrm{Rb}}$
$\mathrm{T}_{\mathrm{B}}=\frac{\mathrm{a}}{\mathrm{Rb}}$
$\mathrm{T}_{\mathrm{i}}=2 \mathrm{~T}_{\mathrm{B}}$
$\mathrm{T}_{\mathrm{C}}<\mathrm{T}_{\mathrm{B}}<\mathrm{T}_{\mathrm{i}}$
Q. 52 (D)
$\uparrow \mathrm{T}_{\mathrm{C}}=\frac{8 \mathrm{a} \uparrow}{27 \mathrm{Rb} \downarrow}$
It sould be z .
Q. 53 (3)

Factual question
Q. 54 (3)

Factual question
Q. 55 (3)

Ease of liquification $\propto \mathrm{a}$
Q. 56 (2)

Boiling point $\propto \mathrm{a}$
Q. 57 (A)

Required $\%=\frac{4}{3} \times \frac{\pi \times\left(2 \times 10^{-8}\right)^{3} \times 6 \times 10^{23}}{22400} \times 100$. $=0.09 \%$
Q. 58 (1)
$\left(\mathrm{P}+\frac{\mathrm{an}^{2}}{\mathrm{~V}^{2}}\right)(\mathrm{V}-\mathrm{nb})=\mathrm{nRT}$.

Q. 59 (1)

$(\mathrm{P})(\mathrm{V}-\mathrm{nb})=\mathrm{nRT}$
$\mathrm{P}=\frac{\mathrm{nRT}}{\mathrm{V}-\mathrm{nb}}$
Q. 60 (3)
$\mathrm{PV}=\mathrm{Pb}+\mathrm{RT}$
$\frac{\mathrm{PV}}{\mathrm{RT}}=1+\frac{\mathrm{Pb}}{\mathrm{RT}}$
Q. 61 (1)

$$
\begin{aligned}
& \left(P+\frac{a}{V^{2}}\right)(V)=R T \\
& P V+\frac{a}{V}=R T \\
& \frac{P V}{R T}=1-\frac{a}{V R T}
\end{aligned}
$$

Q. 62 (1)
$4 \times \frac{4}{3} \pi r^{3} \times N_{A}=24$
JEE-ADVANCED
OBJECTIVE QUESTIONS
Q. 1 (C)
$\mathrm{PV} \propto \mathrm{T}$
Q. 2 (C)
$\mathrm{PV}=\mathrm{nRT}$
$P V=\frac{1}{M} R T$
Q. 3 (C)

Max capacity of balloon $=600 \mathrm{ml}$
$\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2}$
$500 \times 1=600 \times \mathrm{P}_{2}$
$\mathrm{P}_{2}=\frac{5}{6} \times 760 \mathrm{~mm}=633 \mathrm{~mm}$
Height above which balloon will burst $=(760-633)$ $\times 100 \mathrm{~cm}$

$$
\begin{aligned}
& =127 \times 100 \mathrm{~cm} \\
& =127 \mathrm{~m}
\end{aligned}
$$

Q. 4 (B)
 $\rho=\frac{\mathrm{PM}}{\mathrm{RT}}$

Q. 5 (B)
$76 \times 13.6=x \times 13.6+1 \times 13.6+3.4 \times 20+6.8 \times 30$ $+13.6 \times 15$
$76 \times 13.6=x \times 13.6+13.6+13.6 \times 5+13.6 \times 15+$ 13.6×15
$76=x+1+5+30$
$\mathrm{x}=40 \mathrm{~cm}$
Q. 6 (D)
$\frac{\mathrm{n}_{\mathrm{O}_{2}}}{\mathrm{n}_{\text {cyclopropane }}}=\frac{\mathrm{P}_{\mathrm{O}_{2}}}{\mathrm{P}_{\text {cyclopropane }}}$
Q. 7 (D)
$\mathrm{N}_{2} \rightarrow 2 \mathrm{~N}$
at $\mathrm{t}=0 \quad \frac{1.4}{28}=\frac{1}{20} 0$
at $\mathrm{t}=\mathrm{t}_{\mathrm{f}} \quad \frac{1}{20}-\mathrm{x} 2 \mathrm{x}$
but, $x=30 \%$ of $\frac{1}{20}=\frac{3}{200}$
Final number of mole $=\frac{1}{20}-x+2 x=\frac{1}{20}+x=\frac{1}{20}$
$+\frac{3}{200}=\frac{13}{200}$
$\therefore \mathrm{P}=\frac{13}{200} \times \frac{0.0821 \times 1800}{5}=1.92 \mathrm{~atm}$.
Q. $8 \quad$ (A)
$\mathrm{H}_{2}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$
a
0
a-2b 0
b
Reaction is studied at constant P \& T
$\mathrm{a}+\mathrm{b}=40 \mathrm{a}-2 \mathrm{~b}=10$
$\mathrm{a}=30 \mathrm{ml} \mathrm{b}=10 \mathrm{ml}$
mole fraction of $\mathrm{H}_{2}=$ volume fraction of $\mathrm{H}_{2}=30 / 40$ $=0.75$.
Q. 9 (B)
$\frac{r_{\text {mixture }}}{r_{\mathrm{O}_{2}}}=\sqrt{\frac{32}{\mathrm{M}}}=\frac{20 \times 60}{311}$
$\mathrm{M}=2.16$
V.D. $=4.32$
Q. 10 (D)
$\frac{t_{\text {mix }}}{t_{\mathrm{O}_{2}}}=\frac{\mathrm{r}_{\mathrm{O}_{2}}}{\mathrm{r}_{\text {mix }}}=\sqrt{\frac{\mathrm{M}_{\text {mix }}}{32}}$
$\frac{234}{224}=\sqrt{\frac{\mathrm{M}_{\text {mix }}}{32}}$
$\mathbf{M}_{\text {mix }}=\frac{80 \times 32+\mathrm{x} \times 20}{100}$
Q. 11 (B)

$\frac{r_{\mathrm{HCl}}}{r_{\mathrm{NH}_{3}}}=\sqrt{\frac{17}{36.5}} \Rightarrow \frac{\mathrm{x}}{200-\mathrm{x}}=\sqrt{\frac{17}{36.5}} \Rightarrow \mathrm{x}=81.13$
cm
Q. 12 (C)

Let both gases meet at $\mathrm{n}^{\text {th }}$ row

$\frac{r_{\mathrm{NO}_{2}}}{\mathrm{r}_{\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{Br}}}=\frac{x}{12-x}=\sqrt{\frac{179}{44}}=2$
$\mathrm{x}=24-2 \mathrm{x}$
$3 \mathrm{x}=24$
$\mathrm{x}=8=\mathrm{n}-1$
$\mathrm{n}=9^{\text {th }}$ Row

Q. 13 (C)

$r \propto \frac{1}{\sqrt{\mathrm{M}}}$
Q. 14 (A)

Transtational K. E. $=3 / 2 \mathrm{nRT}$
$\frac{3}{2} \times 2 \times 2 \times 300=1800 \mathrm{cal}$
Q. 15 (D)

Charles law is applicable
Q. 16 (C) It is factual question
Q. 17 (B)

It is factual question
Q. 18 (A)C
(A) $\mathrm{U}_{\text {M.P.S. }} \uparrow$
(B) $\mathrm{T} \uparrow$
Q. 19 (B)
$\mathrm{Z}=\frac{(\mathrm{PV})_{\text {real }}}{(\mathrm{PV})_{\text {ideal }}}$
Q. 20 (C)

High T, low P
Q. 21 (B)

I -
below critical point <0.
Slope of isotherm
Slope of isotherm
above critical point <0.
Slope of isotherm at
critical point $=0$.

So slope of isotherm at critical point is maximum.

$$
\begin{array}{ll}
I I- & T_{C}=\frac{8 \mathrm{a}}{27 R b} \\
& \mathrm{~T}_{\mathrm{C}} \propto \mathrm{a}
\end{array}
$$

Larger value of T_{C} It means less decreases in temperature is required to liquifly the gas. Gas will liquify at higher temperature. So, easier'll be liquification.
III - When gas is below critical temperature. It is 'liquid' so vander waal equation of state is not valid. So, Answer (B).
Q. 22 (C)

It is factual question
Q. 23 (D)
$\mathrm{T}_{\mathrm{C}} \propto \frac{\mathrm{a}}{\mathrm{b}}$
Q. 24 (C)
$\mathrm{V}_{\mathrm{C}}=3 \times \mathrm{N} \times \frac{4}{3} \pi \mathrm{r}^{3} \times 0.44$
Q. 25 (D)

It is factual question
Q. 26 (D)

It is factual question
Q. 27 (C)

If $Z>1$ positive deviation
$\mathrm{Z}<1$ negative deviation
Q. 28 (D)

(a) at $\mathrm{T}=500 \mathrm{~K}, \mathrm{P}=40 \mathrm{~atm}$ corresponds to ' a ' substance - gas
(b) at $\mathrm{T}=300 \mathrm{~K}, \mathrm{P}=50 \mathrm{~atm}$ corresponds to ' b ' substance - liquid
(c) at $\mathrm{T}<300 \mathrm{~K}, \mathrm{P}>20 \mathrm{~atm}$ corresponds to 'c' substance - liquid
(d) at $\mathrm{T}<500 \mathrm{~K}, \mathrm{P}>50 \mathrm{~atm}$ corresponds to 'd' substance - liquid
Q. 1 (A, B)

Suppose the cylinder will burst at $\mathrm{T}_{2} \mathrm{~K}$

$$
\mathrm{T}_{2}=\frac{\mathrm{P}_{2} \mathrm{~T}_{1}}{\mathrm{P}_{1}}\left(\mathrm{~V}_{1}=\mathrm{V}_{2}\right)=\frac{14.9 \times 300}{12}=372.5 \mathrm{~K}
$$

Q. 2 (A, C)
$\mathrm{V}=8.21 \mathrm{~L}$
$\mathrm{n}=2$
$\mathrm{T}=300 \mathrm{~K}$
(A) $\mathrm{P}=6 \mathrm{~atm}$
(B) $\mathrm{P} \propto \mathrm{KT} \forall \mathrm{K}=\frac{\mathrm{nR}}{\mathrm{V}}$
Q. 3 (A, B)

P α T
$\mathrm{K}=\frac{\mathrm{nR}}{\mathrm{V}}$
$\mathrm{n}=$ chang ; $\mathrm{V}=$ must change to maintain
$\mathrm{n}=$ const; V constant
Q. 4 (A, D)

(A) I. P. $=3 \mathrm{~atm}$ by $P=\frac{n R T}{V}$
(B) Pressure just after openin doesn't changes
(D) Pressure becomes same after some time
Q. 5 (B, C)

At point $A \underset{A}{T}=\frac{2 \times 10}{R \times 2}=\frac{8}{R}$
At point D ${\underset{D}{\mathrm{D}}}_{\mathrm{T}}^{\mathrm{D}}=\frac{2 \times 10}{2 \times \mathrm{R}}=\frac{10}{\mathrm{R}}$
Pressure at B
$\frac{T_{B}}{T_{A}}=\frac{P_{B}}{P_{A}}$
$P_{B}=\frac{300}{(B / R)} \times 75 R$
Q. 6 (B*) (D*)
$r \propto \frac{1}{\sqrt{M}}$
Q. 7 (B, D)
$\operatorname{Given} \frac{r_{A}}{r_{B}}=\frac{16}{3} ; \frac{w_{A}}{w_{B}}=\frac{2}{3}$
we have $\frac{r_{A}}{r_{B}}=\frac{n_{A}}{n_{B}} \sqrt{\frac{M_{B}}{M_{A}}}$
$\frac{16}{3}=\frac{w_{A}}{M_{A}} \frac{M_{B}}{w_{B}} \sqrt{\frac{M_{B}}{M_{A}}}$
$\frac{16}{3}=\frac{2}{3}\left(\frac{M_{B}}{M_{A}}\right)^{3 / 2} \Rightarrow\left(\frac{M_{B}}{M_{A}}\right)^{3 / 2}=8$
$\Rightarrow \frac{\mathrm{M}_{\mathrm{B}}}{\mathrm{M}_{\mathrm{A}}}=4$
\therefore mole ratio $=\frac{8}{3}$
Q. 8 (B, C)

Clearly from the diagram
$\left(v_{M P S}\right)_{B}>\left(v_{\text {MPS }}\right)_{A} \Rightarrow \frac{T_{2}}{M_{B}}>\frac{T_{1}}{M_{A}} \Rightarrow \frac{T_{2}}{T_{1}}>\frac{M_{B}}{M_{A}}$
hence if $T_{1}>T_{2} . M_{A}$ is necessarily greater than M_{B}
Q. 9 (A, B, C)

With increase in temperature, most probable velocity increases \& fraction of molecules with velocity equal to M.P. velocity decreases. Total no. of molecules remain same.
Q. 10 (A, B, D)
K.E. is a function of temperature. If temperature is constant, K.E. will be constant.
Q. 11
(B, D)
$P_{C}=\frac{a}{27 b^{2}} T_{C}^{2}=\frac{64 a^{2}}{27 \times 27 R^{2} b^{2}}$
$V_{C}=3 b \frac{T_{C}^{2}}{P_{C}}=\frac{64 a^{2}}{27 \times 27 R^{2} b^{2}} \times \frac{27 b^{2}}{a}$
$T_{C}=\frac{8 \mathrm{a}}{27 R b} \mathrm{a}=\frac{27 R^{2} T_{C}^{2}}{64 P_{C}}$
Q. 12 (A, C, D)
Q. 13 (A, B)
incorrect
(A) at boyle's temperture a real gas behave as ideal irresp. of pressur
(B) At critical cond ${ }^{\mathrm{n}}$ a real gas behave as ideal.
Q. 14 (A, B, C, D)

Factual Question
Q. 15 (B, D)

Initially $\mathrm{P}=760 \mathrm{~mm}$ of $\mathrm{Hg}=1 \mathrm{~atm}$
$\Rightarrow \quad \mathrm{P}_{\mathrm{A}}($ initial $)=1 \mathrm{~atm}$
$2 \mathrm{~A} \longrightarrow 3 \mathrm{~B}$
$+2 \mathrm{C}$
100
1-0.20.30.2
$\mathrm{P}_{\text {Total }}=1.3 \mathrm{~atm}=98.8 \mathrm{~cm} \mathrm{Hg}$
Total Pressure inaeared by 0.3 atm
diffenence in Hg level $=98.8-76$
$=22.8 \mathrm{~cm}$
$=228 \mathrm{~mm}$

Comprehension \# 1 (Q. No. 16 to 18)

Q. 16 (B)

$\mathrm{Pe}^{\mathrm{v} / 2}=\mathrm{nCT}$
$\mathrm{T}=500 \mathrm{~K}$
$\mathrm{n}=2$ moles
$\mathrm{P}=1 \mathrm{~atm}$
on solving

C $=\frac{1 \times e^{0}}{500 \times 2}=0.001$
Q. 17 (D)
P. $\mathrm{e}^{\mathrm{v} / 2}=\mathrm{nCT}$
$P=\frac{n C}{e^{v / 2}} T$
Slope $=\frac{n C}{e^{v / 2}}$
$\mathrm{C}=0.001 \& \mathrm{~V}=2 \mathrm{~L}$
$\mathrm{n}=2$
$\mathrm{P}=\frac{2}{1000} \mathrm{e}^{-1}$
Q. 18 (A)
$\mathrm{V}=2001 \mathrm{P}=1 \mathrm{~atm} \quad \mathrm{~T}=200 \mathrm{~K}$ at earth
$\mathrm{n}=\frac{200}{200 \times \mathrm{T}}=\frac{1}{\mathrm{R}}$
P. $e^{100}=\frac{1}{R} \times C \times 821$

On solving $\mathrm{P}=\frac{10}{\mathrm{e}^{100}}$
Comprehension \# 2 (Q. No. 19 to 21)
Q. 19 (D)
$\mathrm{Z}=\mathrm{z} \sigma^{2} \overline{\mathrm{u}} \mathrm{N}^{*}$
$N^{*} \alpha \frac{1}{\mathrm{~V}}$
$x \alpha \frac{1}{V}=A$
$y \alpha \frac{1}{2 V}=\frac{A}{2}$
Ratio $=2: 1$
None of these
Q. 20 (C)

Total no. of colusons per unit volume $\alpha \frac{\left(\mathrm{N}^{*}\right)^{2}}{\mathrm{~V}}$
Ratio $=1: \sqrt{2}$
Q. 21 (A)
$\mathrm{H}_{2} \longrightarrow 2 \mathrm{H}$
$\frac{\mathrm{n}_{\mathrm{x}}}{\mathrm{n}_{\mathrm{y}}}=\frac{\mathrm{n}_{\mathrm{He}}}{\mathrm{n}_{\mathrm{H}}}=\frac{\mathrm{x} / 4}{\mathrm{x} / 1}=\frac{1}{4}$
$\frac{\mathrm{V}_{\mathrm{x}}}{\mathrm{V}_{\mathrm{y}}}=\frac{1}{2} \Rightarrow \frac{\mathrm{~N}_{\mathrm{x}}^{\mathrm{x}}}{\mathrm{N}_{\mathrm{y}}^{\mathrm{x}}}=\frac{1}{4} \times 2=\frac{1}{4}$
$\frac{\sigma_{x}}{\sigma_{y}}=2\left(\right.$ because H_{2} become H)
$\frac{U_{a v g x}}{U_{\text {avgy }}}=\sqrt{\frac{(T / M)_{x}}{(T / M)_{y}}}=\sqrt{\frac{T / 4}{2 T / 1}}=\frac{1}{2 \sqrt{2}}$
$\frac{Z_{11 x}}{Z_{11 y}}=\left(\frac{N_{x}^{+}}{N_{y}}\right)^{2} \times\left(\frac{U_{\text {avex }}}{U_{\text {avg }}}\right) \times\left(\frac{\sigma_{x}}{\sigma_{y}}\right)^{2}$
$=\frac{1}{4} \times \frac{1}{2 \sqrt{2}} \times 4 \frac{1}{2 \sqrt{2}}$
$Z_{11 y}=2 \sqrt{2} \quad Z_{11 x}=2 \sqrt{2} A$
Comprehension \# 3 (Q. No. 22 to 24)
Q. 22 (D)
(I) $\mathrm{Z}=1 \rightarrow$ Ideal behaviour.
(II) Z \quad > $1 \rightarrow$ On applying pressure, volume decreases.
(III) $\mathrm{Z}<1 \rightarrow$ Gas can easily liquefied.
(VI) At low $\mathrm{P}, \mathrm{Z} \rightarrow 1$ means gas is approaching to ideal behaviour.
Q. 23 (B)
$\mathrm{Z}=\frac{\mathrm{PV}}{\mathrm{m}} \mathrm{RT}>1$
$\frac{P V_{m}}{R T}=\frac{1 \times 22.4}{R \times T}$
At same pressure $=1 \mathrm{~atm}$.

$$
\frac{1 \times V_{m}}{R T}>\frac{1 \times 22.4}{R \times T}
$$

$\Rightarrow \quad \mathrm{V}_{\mathrm{m}}>22.4 \mathrm{~L}$ at STP for real gas.
For, $\quad \mathrm{V}_{\mathrm{m}}=22.4 \mathrm{~L}$ of real gas, we have to increase the pressure.
Q. 24 (D)

On moving from region (II) to region (I), pressure tends to zero. So, $\mathrm{Z} \rightarrow 1$.

Comprehension \# 4 (Q. No. 25 to 27)
Q. 25 C

At critical point
$\frac{\partial \mathrm{p}}{\partial \mathrm{V}_{\mathrm{m}}}=0 \Rightarrow-\frac{\mathrm{RT}_{\mathrm{C}}}{\mathrm{V}_{\mathrm{m}}^{2}}+\frac{2 \mathrm{~B}}{\mathrm{~V}_{\mathrm{m}}^{3}}-\frac{3 \mathrm{C}}{\mathrm{V}_{\mathrm{m}}^{4}}=0 \Rightarrow-\mathrm{RT}_{\mathrm{C}}+\frac{2 B}{\mathrm{~V}_{\mathrm{m}}}$
$-\frac{3 C}{V_{m}^{2}}=0 \Rightarrow R_{C} V^{2}{ }_{m}-2 B V_{m}+3 C=0$
as equation will have repeated root then $\mathrm{D}=0 \Rightarrow \mathrm{~T}_{\mathrm{C}}$
$=\frac{\mathrm{B}^{2}}{3 \mathrm{RC}}$
Q. 26 (D)
P_{C}, V_{C} and T_{C} are given hence ' a ' and ' b ' should be calculated using P_{C} and T_{C} as it is more reliable.

$$
\begin{aligned}
& P_{C}=\frac{a}{27 b^{2}}, T_{C}=\frac{8 a}{27 R b} \\
& \frac{P_{C}}{T_{C}}=\frac{R}{8 b} \Rightarrow b=\frac{300 \times 1 / 12}{8 \times 50}=\frac{1}{16} \\
& 4 \times \frac{4}{3} \pi r^{3} \cdot N_{A}=\frac{1}{16} \Rightarrow r=\left(\frac{3}{256 \pi N a}\right)^{1 / 3}
\end{aligned}
$$

Q. 27 (D)

At 100 K and pressure below 20 atm it may have liquid or gaseous state depending on the pressure.

Comprehension \# 5 (Q. No. 28 to 30)
Q. 28
(A)

Q. 33 (A)

Case I
Case II
$\mathrm{P}_{1}=\left(\mathrm{P}_{0}+\mathrm{h}\right) \mathrm{P}_{2}=\left(\mathrm{P}_{0}-\mathrm{h}\right) \mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2}$
Now in both the cases, the gas is the same and temperature is also constant, hence boyles law can be applied.
$\ell_{1} \mathrm{~A}\left(\mathrm{P}_{0}+\mathrm{h}\right)=\ell_{2} \mathrm{~A}\left(\mathrm{P}_{0}-\mathrm{h}\right)$
$P_{0}=\frac{h\left(\ell_{1}+\ell_{2}\right)}{\left(\ell_{2}-\ell_{1}\right)} \mathrm{cm}$ of Hg column.
Q. 34 A-r; B-s; C-p; D-q
(A) $\frac{1}{\mathrm{~V}^{2}} \mathrm{v} / \mathrm{sP}$
$\mathrm{PV}=\mathrm{nRT}$

$\mathrm{P}^{2}=\frac{\mathrm{K}^{2}}{\mathrm{~V}^{2}}$

$y=m x$
(B) $\mathrm{PV}=\mathrm{nRT}$
$\frac{V}{T}=\frac{n R}{P}=K$
$V=K T$

$V=\frac{K}{\left(\frac{1}{T}\right)}$

(D) $\mathrm{PV}=\mathrm{nRT}$
$V=\frac{K}{P}$
$\mathrm{V}^{2}=\frac{\mathrm{K}^{2}}{\mathrm{P}^{2}}$

Q. 35 (A) - s ; (B) - q, s; (C) -r ; (D) - p
(A) $\quad \mathrm{PV}=\mathrm{nRT}$

At constant temperature
$\mathrm{PV}=\mathrm{K}(\mathrm{T}=$ constant $)$
Higher the value of PV , higher the temperature.
So, $\mathrm{T}_{3}>\mathrm{T}_{2}>\mathrm{T}_{1}$
Since, $P_{1}=P_{2}=P_{3}$

So, $\mathrm{V} \propto \mathrm{T} \Rightarrow \mathrm{V}_{3}>\mathrm{V}_{2}>\mathrm{V}_{1}$
$d=\frac{P M}{R T}$
Since, $P_{1}=P_{2}=P_{3}$
$\mathrm{d} \propto \frac{1}{\mathrm{~T}} \Rightarrow \mathrm{~d}_{1}>\mathrm{d}_{2}>\mathrm{d}_{3}$
(B) From Graph,
$\mathrm{V}_{3}>\mathrm{V}_{2}>\mathrm{V}_{1}$ and $\mathrm{T}_{1}=\mathrm{T}_{2}=\mathrm{T}_{3}$
Higher the volume, lesser the pressure because
temperature is same for all.
$\mathrm{P}_{1}>\mathrm{P}_{2}>\mathrm{P}_{3}$
$d=\frac{P M}{R T}$
Since, $\mathrm{T}_{1}=\mathrm{T}_{2}=\mathrm{T}_{3}$
So, $\mathrm{d} \propto \mathrm{P} \Rightarrow \mathrm{d}_{1}>\mathrm{d}_{2}>\mathrm{d}_{3}$
(C) From the graph,
$\mathrm{P}_{3}>\mathrm{P}_{2}>\mathrm{P}_{1}$ and $\mathrm{T}_{1}=\mathrm{T}_{2}=\mathrm{T}_{3}$
Higher the pressure, lesser the volume because temperature is same for all.
$V_{1}>V_{2}>V_{3}$
$d=\frac{P M}{R T}$
Since, $\mathrm{T}_{1}=\mathrm{T}_{2}=\mathrm{T}_{3}$
So, $\mathrm{d} \propto \mathrm{P} \Rightarrow \mathrm{d}_{3}>\mathrm{d}_{2}>\mathrm{d}_{1}$
(D) From the graph,
$\mathrm{d}_{3}>\mathrm{d}_{2}>\mathrm{d}_{1}$ and $\quad \mathrm{P}_{1}=\mathrm{P}_{2}=\mathrm{P}_{3}$
$d=\frac{P M}{R T} \Rightarrow d \propto \frac{1}{T}$
So, $\mathrm{T}_{1}>\mathrm{T}_{2}>\mathrm{T}_{3}$
$\mathrm{PV}=\mathrm{nRT}$
Since, $P_{1}=P_{2}=P_{3}$
$\mathrm{V} \propto \mathrm{T}$
So, $\mathrm{V}_{1}>\mathrm{V}_{2}>\mathrm{V}_{3}$
Q. 36
(A) - q, r; (B) - p,s ; (C) - q, r; (D) - p,s
(A) At low pressure, b is negligible in comparison to V_{m}.

$$
\begin{aligned}
& \left(\mathrm{P}+\frac{\mathrm{a}}{\mathrm{~V}_{\mathrm{m}}^{2}}\right)\left(\mathrm{V}_{\mathrm{m}}\right)=\mathrm{RT} \\
\Rightarrow \quad & \frac{\mathrm{PV} \mathrm{~V}_{\mathrm{m}}}{\mathrm{RT}}=\mathrm{Z}=1-\frac{\mathrm{a}}{\mathrm{~V}_{\mathrm{m}} R T}<1
\end{aligned}
$$

So, gas is more compressible than ideal gas.
(B) At high pressure, $\frac{\mathrm{a}}{\mathrm{V}_{\mathrm{m}}^{2}}$ is negligible in comparison to P .

$$
\begin{aligned}
& \therefore P\left(V_{m}-b\right)=R T \\
& \Rightarrow \frac{P V_{m}}{R T}=Z=1+\frac{R b}{R T}<1 .
\end{aligned}
$$

So, gas is less compressible than ideal gas.
(C) Low density of gas means pressure is low so, at low pressure $Z=1-\frac{a}{V_{m} R T}<1$ and gas is more compressible than ideal gas.
(D) At $0^{\circ} \mathrm{CH}_{2}$ and He have $\mathrm{a} \approx 0$.

So, $Z=1+\frac{P b}{R T}$ and gas is less compressible than ideal gas.
Q. 37 (A-w), (B-u), (C-v),(D-p), (E-x), (F-y),(G-r),(H-q),(Is), (J-t).
(A) $\mathrm{PV}=\mathrm{K}$ (Boyle's law)

$$
\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2}=\mathrm{P}_{3} \mathrm{~V}_{3}
$$

(B) From charle's law

$$
\mathrm{V} \propto \mathrm{~T} \Rightarrow \frac{\mathrm{~V}}{\mathrm{~T}}=\mathrm{K} \Rightarrow \frac{\mathrm{~V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{V}_{2}}{\mathrm{~T}_{2}}
$$

(C) From Graham's law

$$
\mathrm{r} \propto \frac{1}{\sqrt{M}} \text { and } d=\frac{\mathrm{PM}}{R T} \Rightarrow \mathrm{~d} \propto \mathrm{M} .
$$

So, $\quad r \propto \frac{1}{\sqrt{d}}$.
(D) From Dalton's law of partial pressure at constant temperature.

$$
\mathrm{P}=\mathrm{P}_{1}+\mathrm{P}_{2}+
$$

\qquad
(E) Vander Waal's equation (real gas equation)

$$
\left(\mathrm{P}+\frac{\mathrm{a}}{\mathrm{~V}^{2}}\right)(\mathrm{V}-\mathrm{b})=\mathrm{RT}(\text { For } 1 \text { mole })
$$

(F) $\frac{\mathrm{R}}{\mathrm{N}}=\mathrm{K}($ Boltzmann constant)
(G) Molar volume $=22.4 \mathrm{~L}$ at STP
(I) Constant temperature $\mathrm{P}-\mathrm{V}$ curve is called isotherm.
(J) Graph between V and T at constant pressure called isobar.

NUMERICAL VALUE BASED

Q. 12
$\mathrm{P}_{1} \mathrm{~T}_{2}=\mathrm{P}_{2} \mathrm{~T}_{1}$ or $\mathrm{P}_{2} \frac{\mathrm{P}_{1} \mathrm{~T}_{2}}{\mathrm{~T}_{1}}$ or $\mathrm{P}_{2}=\frac{1 \times 273}{546}=\frac{1}{2}$
hence $x=2$

Q. 22

Q. $3 \quad 4$

$$
\mathrm{P}_{\mathrm{He}}=\mathrm{X}_{\mathrm{He}} \mathrm{P}_{\mathrm{Total}}=\frac{16}{4}=4 \mathrm{~atm}
$$

Q. 46
Q. 55

Q. 65

$\mathrm{H}-14.3 \%, \mathrm{C}=85.7 \%$
\therefore Emperical formula is CH_{-2}

$$
\left(\mathrm{CH}_{2-}\right)_{\mathrm{n}}+\frac{(3 \mathrm{n})}{2} \mathrm{O}_{2} \longrightarrow \mathrm{nCO}_{2}+\mathrm{nH}_{2} \mathrm{O}
$$

1 mL reacts with $\frac{3 \mathrm{n}}{2} \mathrm{~mL}$
10 mL reacts with $\frac{3 \mathrm{n}}{2} \times 10$
$\therefore \quad \frac{3 n}{2} \cdot 10=75$
$\mathrm{n}=\frac{150}{30}=5$
Q. 76 atm
$P_{1} V_{1}=P_{2} V_{2}$ or $2 \times V=P_{2} \times \frac{V}{4} P_{2}=8 \mathrm{~atm}$
Total increase $=8-2=6 \mathrm{~atm}$
Q. $8 \quad 4$

Graham's Law $\mathrm{r} \alpha \frac{1}{\sqrt{\mathrm{M}}}, \quad \frac{\mathrm{r}_{1}}{\mathrm{r}_{2}}=\sqrt{\frac{\mathrm{M}_{2}}{\mathrm{M}_{1}}}$
Q. 98
Q. $10 \quad 9$

$$
P=\frac{n R T}{V-n b}-\frac{a n^{2}}{v^{2}}=10-1=9
$$

KVPY

PREVIOUS YEAR'S

Q. 1 (D)

Since pressure of the gases are same in both the containers. Therefore the final pressure will not change.
Q. 2 (D)
(K.E. $)_{\text {average }}=\frac{3}{2} \mathrm{kT}$
i.e., average kinetic energy depends only on temperature.
Q. 3 (C)
Q. 4 (D)
$\frac{3}{2} \mathrm{KT}=1.6 \times 10^{-19}$
$\frac{3}{2} \times 1.38 \times 10^{-23}=1.6 \times 10^{-19}$
$\mathrm{T}=10^{5} \mathrm{~K}$
Q. 5 (B)

$$
\frac{\mathrm{r}_{\mathrm{O}_{2}}}{\mathrm{r}_{\mathrm{H}_{2}}}=\sqrt{\frac{\mathrm{M}_{\mathrm{H}_{2}}}{\mathrm{M}_{\mathrm{O}_{2}}}} ; \frac{\mathrm{r}_{\mathrm{O}_{2}}}{\mathrm{r}_{\mathrm{H}_{2}}} \sqrt{\frac{2}{32}} \frac{\mathrm{r}_{\mathrm{O}_{2}}}{\mathrm{r}_{\mathrm{H}_{2}}}=\frac{1}{4} \quad \mathrm{r}_{\mathrm{O}_{2}}: \mathrm{r}_{\mathrm{H}_{2}}=1: 4
$$

Q. 6 (A)

Average speed $\left(\mathrm{r}_{\text {avg }}\right)=\sqrt{\frac{8 \mathrm{RT}}{\pi \mathrm{M}}}$
$\frac{\mathrm{r}_{\mathrm{He}}}{\mathrm{r}_{\mathrm{O}_{2}}}=\sqrt{\frac{32}{4}}=2 \sqrt{2}$
$\mathrm{r}_{\mathrm{He}}=\mathrm{r}_{\mathrm{o}_{2}} 2 \sqrt{2}$
Q. 7 (D)

Vg at $0^{\circ} \mathrm{C}=250 \mathrm{~cm}^{3}$
Vg at $300^{\circ} \mathrm{C}=500 \mathrm{~cm}^{3}$
$\frac{\operatorname{Vg}\left(300^{\circ} \mathrm{C}\right)}{\operatorname{Vg}\left(0^{\circ} \mathrm{C}\right)}=2$
Q. 8 (A)

At X V $=50 \mathrm{~L} \quad \mathrm{~T}=200 \mathrm{~K}$
$\mathrm{P}_{\mathrm{X}}=\frac{\mathrm{nRT}}{\mathrm{V}}=\frac{1 \times 0.0821 \times 200}{50}$
$=0.328$
$\operatorname{At~Z~P~} \mathrm{Z}_{\mathrm{Z}}=\frac{1 \times 0.0821 \times 200}{20}=0.821$
At $Y P_{Y}=\frac{1 \times 0.0821 \times 500}{50}=\frac{0.821}{}$
Q. 9 (C)
$\mathrm{p} \propto \mathrm{T}(\mathrm{V}, \mathrm{n} \rightarrow$ const $)$
$\frac{\mathrm{P}_{1}}{\mathrm{P}_{2}}=\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}$
$\frac{1}{\mathrm{P}_{2}}=\frac{300}{600}$
$\mathrm{P}_{2}=2 \mathrm{~atm}$
Q. 10 (A)
$\mathrm{r} \propto \frac{1}{\sqrt{\mathrm{M}}}$ Rate of diffusion decrease with increase in molecular weight
Rate of diffusion order $\mathrm{CO}=\mathrm{N}_{2}>\mathrm{O}_{2}>\mathrm{CO}_{2}$
(28) (28) (32) (44)
Q. 11 (A)
$\mathrm{V}_{\mathrm{rms}}=\sqrt{\frac{3 \mathrm{RT}}{\mathrm{M}}}$
$\frac{\left(\mathrm{V}_{\mathrm{rms}}\right)_{\mathrm{H}_{2}}}{\left(\mathrm{~V}_{\mathrm{rms}}\right)_{\mathrm{O}_{2}}}=\frac{\sqrt{\frac{3 \times \mathrm{R} \times 50}{2}}}{\sqrt{\frac{3 \times \mathrm{R} \times 500}{28}}}=1.18$
Q. 12 (A)
$\mathrm{Z}=\frac{\left(\mathrm{V}_{\mathrm{M}}\right)_{\mathrm{r}}}{\left(\mathrm{V}_{\mathrm{M}}\right)_{\mathrm{i}}}<1$ at $\mathrm{p}<200$ bar
$\therefore\left(\mathrm{V}_{\mathrm{M}}\right)_{\mathrm{r}}<\left(\mathrm{V}_{\mathrm{M}}\right)_{\mathrm{i}}$
Q. 13 (B)
$\mathrm{PV}=\mathrm{nRT}$
$\Rightarrow \frac{\mathrm{V}}{\mathrm{T}}=\frac{\mathrm{nR}}{\mathrm{P}}=$ slope
$\Rightarrow \mathrm{P}=\frac{\mathrm{nR}}{\text { slope }}=\frac{2 \times 0.0821}{0.328}=0.5$

Q. 14 (D)

The maximum amount of nitrogen that can be safely put in this container must, exert a pressure less than 2 atom at 298 K .
i.e. maximum moles in container $\mathrm{n}=\frac{\mathrm{PV}}{\mathrm{RT}}$

$$
=\frac{2 \times 2.24}{0.0821 \times 298}=0.18
$$

i.e. maximum weight of N_{2} in container $=0.183 \times 28$ $=5.127 \mathrm{gm}$.
The correct answer is, (D) 4.2 grams
for safely concern, we cant't go for adding more nitrogen.
Q. 15 (B)

Q. 16 (B)

Van -der walls goes eauation for $\mathrm{n}=1$
$\left(\mathrm{P}+\frac{\mathrm{a}}{\mathrm{V}_{\mathrm{m}}^{2}}\right)\left(\mathrm{V}_{\mathrm{m}}-\mathrm{b}\right)=\mathrm{RT}$
Compressibility factor (z) decreases if (b) decreases (a) increases at constant temperature.
Q. 17 (D)

Since $T_{1}>T_{c}$, the gas cannot be liquefied at $T_{1} T_{c}$ is the highest temperature at which the gas can be liquefied. At temperature T_{2}, liquid starts to appear at point B, however a small increase in pressure at point A condenses the whole system to liquid.
Q. 18
(D)

JEE-MAIN

PREVIOUS YEAR'S

Q. $1 \quad 70^{\circ} \mathrm{C}$

$$
\frac{\mathrm{P}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{P}_{2}}{\mathrm{~T}_{2}}
$$

$\frac{35}{300}=\frac{40}{\mathrm{~T}_{2}}$
$\mathrm{T}_{2}=\frac{40 \times 300}{35}$
$=342.86 \mathrm{~K}$
$=69.85^{\circ} \mathrm{C}$
$\simeq 70^{\circ} \mathrm{C}$
Q. 21
$\mathrm{P}(\mathrm{V}-\mathrm{b})=\mathrm{RT}$
$\mathrm{PV}-\mathrm{Pb}=\mathrm{RT}$
$\frac{\mathrm{PV}}{\mathrm{RT}}-\frac{\mathrm{Pb}}{\mathrm{RT}}=1$
$\mathrm{z}=1+\frac{\mathrm{Pb}}{\mathrm{RT}}$
$\frac{\mathrm{dz}}{\mathrm{dp}}=0+\frac{\mathrm{b}}{\mathrm{RT}}$
$=\frac{\mathrm{b}}{\mathrm{RT}}=\frac{\mathrm{xb}}{\mathrm{RT}}$
$\mathrm{x}=1$
Q. 3 (5)
$\mathrm{V}=\frac{\mathrm{nRT}}{\mathrm{P}}=\frac{\left(\frac{4.75}{26}\right) \times 0.0826 \times 323}{\left(\frac{740}{760}\right)} \approx 5 \mathrm{~L}$
Q. $4 \quad$ (150)

Total moles of gases, $\mathrm{n}=\mathrm{n}_{\mathrm{CH}_{4}}+\mathrm{n}_{\mathrm{CO}_{2}}$

$$
=\frac{6.4}{16}+\frac{8.8}{44}=0.6
$$

Now, $\mathrm{P}=\frac{\mathrm{nRT}}{\mathrm{V}}=\frac{0.6 \times 8.314 \times 300}{10 \times 10^{-3}}$ $=1.49652 \times 10^{5} \mathrm{~Pa}=149.652 \mathrm{kPa}$ $\approx 150 \mathrm{kPa}$
Q. 5 (927)
Q. 6
Q. 7
Q. 8
Q. 9
(2)

JEE-ADVANCED

PREVIOUS YEAR'S
Q. 1 A,B,C,D
(A) Fact
(B) $P=M V=M \sqrt{\frac{3 R T}{M}}=\sqrt{3 M R T}$
(C) Max well distribution
(D) Fact
Q. 27
$\mathrm{P}_{\mathrm{He}}=1-0.68=0.32 \mathrm{~atm}$
$\mathrm{V}=$?
$\mathrm{n}=0.1$
$\mathrm{V}=\frac{\mathrm{nRT}}{\mathrm{P}}=\frac{0.1 \times 0.0821 \times 273}{0.32}=7$
Q. 35
$\lambda=\frac{h}{\sqrt{2 m(K E)}} \quad \mathrm{KE} \propto \mathrm{T}$
$\frac{\lambda_{\mathrm{He}}}{\lambda_{\mathrm{Ne}}}=\sqrt{\frac{m_{\mathrm{Ne}} \mathrm{KE}}{\mathrm{m}_{\mathrm{He}} \mathrm{KE}}}=\sqrt{\frac{20 \times 1000}{4 \times 200}}=5$.

Paragraph for Questions 4 to 5

Q. 4 C

$\mathrm{K} \rightarrow \mathrm{L} \Rightarrow \mathrm{V} \uparrow$ at constant P
Hence $T \uparrow$ (Heating)
$\mathrm{L} \rightarrow \mathrm{M} \Rightarrow \mathrm{P} \downarrow$ at constant V
Hence $\mathrm{T} \downarrow$ (Cooling)
$\mathrm{M} \rightarrow \mathrm{N} \Rightarrow \mathrm{V} \downarrow$ at constant P
Hence $\mathrm{T} \downarrow$ (Cooling)
$\mathrm{N} \rightarrow \mathrm{K} \Rightarrow \mathrm{P} \uparrow$ at constant V
Hence $\mathrm{T} \uparrow$ (Heating)
Q. $5 \quad$ (B)
$\mathrm{L} \rightarrow \mathrm{M}$
$\mathrm{M} \rightarrow \mathrm{K}$
Both are having constant volume therefore these processes are isochoric.

Paragraph for questions 6 and 7

Q. 6 (C)

According to Grham's law, if all conditions are identical,
$r \propto \frac{1}{\sqrt{\mathrm{M}}}$
As in this question, all conditions are identical for X and Y , it will be followed
Hence $\frac{r_{x}}{r_{y}}=\sqrt{\frac{M_{y}}{M_{x}}}$
$\frac{d}{24-d}=\sqrt{\frac{40}{10}}$
$\frac{d}{24-d}=2$
$\mathrm{d}=48-2 \mathrm{~d}$
$3 \mathrm{~d}=48$
$\mathrm{d}=16 \mathrm{~cm}$.
Q. 7 (D)

The general formula of mean free path (λ) is
$\lambda=\frac{R T}{\sqrt{2} \pi d^{2} N_{A} P} \quad$ ($\mathrm{d}=$ diameter of molecule,
$\mathrm{p}=$ pressure inside the vessel).
$\because \mathrm{d} \& \mathrm{p}$ are same for both gases, ideally their λ are same. Hence it must be the higher drift speed of X due to which it is seeing more collisions per second, with the inert gas in comparison to gas Y . So X see comparably more resistance from noble gas than Y and hence covers lesser distance than that predicted by Graham's Law.
Q. 8 9
Initial moles of gases $=1$

$$
{ }_{92}^{238} \mathrm{U} \longrightarrow{ }_{82}^{206} \mathrm{~Pb}+8_{2}^{4} \mathrm{He}+6_{-1} \mathrm{e}^{\circ}
$$

Inital moles	1 moles
Moles after	8 mole

Total gaseous moles after decompostion $=8+1=9$ moles

Ratio of pressures $\frac{P_{f}}{P_{i}}=\frac{n_{f}}{n_{i}}=9$
Q. 9 C

$$
\mathrm{P}(\mathrm{~V}-\mathrm{b})=\mathrm{RT}
$$

$\Rightarrow \mathrm{PV}-\mathrm{Pb}=\mathrm{RT}$
$\Rightarrow \frac{P V}{R T}=\frac{P b}{R T}+1$
$\Rightarrow \quad Z=1+\frac{P b}{R T}$
Hence $\mathrm{Z}>1$ at all pressures.
This means, repulsive tendencies will be dominant when interatomic distance are small.
This means, interatomic potential is never negative but becomes positive at small interatomic distances. Hence answer is (C)
Q. 104 times

Given diffusion coefficient is proportional to mean free path (λ) and mean speed $\left(\mathrm{V}_{\text {mean }}\right)$
And absolute T is increased by 4 times
And average $K_{E} \propto T \Rightarrow \frac{1}{2} m V^{2} \propto T$
When T increased by 4 times $\Rightarrow \mathrm{V}_{\text {mean }}$ increases by 2 times
(i)

Also mean free path,
$\lambda=\frac{K T}{\sqrt{2} \pi d^{2} P} \quad \Rightarrow \quad \lambda \propto \frac{T}{P}$
Increasing T 4 times and $P 2$ times, λ increases 2 times
(ii)
from (i) and (ii) implies, diffusion coefficient increases 4 times
Q. 11 (2.22)
$\mathrm{P}_{1}=5 \quad \mathrm{P}_{2}=1$
$\mathrm{v}_{1}=1$
$\mathrm{v}_{2}=3$
$\mathrm{T}_{1}=400$
$\mathrm{T}_{2}=300$
$\mathrm{n}_{1}=\frac{5}{400 \mathrm{R}} \quad \mathrm{n}_{2}=\frac{3}{300 \mathrm{R}}$
Let volume be $(v+x) \quad v=(3-x) 15-5 x=4+4 x$ $\frac{\mathrm{P}_{\mathrm{A}}}{\mathrm{T}_{\mathrm{A}}}=\frac{\mathrm{P}_{\mathrm{B}}}{\mathrm{T}_{\mathrm{B}}}$

$$
\begin{aligned}
& \frac{\mathrm{n}_{\mathrm{b}_{1}} \times \mathrm{R}}{\mathrm{v}_{\mathrm{b}_{1}}}=\frac{\mathrm{n}_{\mathrm{b}_{2}} \times \mathrm{R}}{\mathrm{v}_{\mathrm{b}_{2}}} \\
& \Rightarrow \frac{5}{400(4+\mathrm{x})}=\frac{3}{300 \mathrm{R}(3-\mathrm{x})}
\end{aligned}
$$

$\Rightarrow 5(3-x)=4+4 x \quad \Rightarrow x=\frac{11}{9}$
$\mathrm{v}=1+\mathrm{x}=1+\frac{11}{9}=\left(\frac{20}{9}\right)=2.22$
Q. $12(1,2,3)$
$\mathrm{U}_{\mathrm{rms}}=\sqrt{\frac{3 R T}{\mathrm{M}}}$
$\mathrm{E}_{\text {avg }}=\frac{3}{2} \mathrm{kT}$
Q. 13 (B)

Graph represents symmetrical distribution of speed and hence, the most probable and the average speed should be same. But the root mean square speed must be greater than the average speed.

Redox Reaction

EXERCISES-I

ELEMENTARY

Q. 1 (3)
Q. 2 (2)
Q. 3 (4)
Q. 4 (2)
Q. 5 (1)
Q. 6 (2)
Q. 7 (4)
Q. 8 (4)
Q. 9 (1)
Q. 10 (3)
Q. $11 \quad$ (3)
Q. 12 (4)
Q. 13 (4)
Q. 14 (1)
Q. 15 (1)
Q. 16 (1)
Q. 17 (3)
Q. 18 (4)
Q. 19 (2)
Q. $20 \quad$ (4)
Q. $21 \quad$ (4)
Q. 22 (3)
Q. 23 (1)
Q. 24 (3)
Q. 25 (4)
$\underset{\text { O.N. }=0}{8 \mathrm{Al}}+3 \mathrm{Fe}_{3} \mathrm{O}_{4} \longrightarrow \underset{\text { O.N. }=+3}{4 \mathrm{Al}_{2} \mathrm{O}_{3}}+9 \mathrm{Fe}$
Total number $\mathrm{e}^{\ominus}=8(3)=24$
Q. 26 (4)

$$
\begin{aligned}
& \mathrm{n}_{1} \mathrm{vf}_{1}=\mathrm{n}_{2} \mathrm{vf} f_{2} \\
& \mathrm{n} \times 5=1 \times 3 \\
& \mathrm{n}_{1}=\frac{3}{5}
\end{aligned}
$$

Q. 27 (4)
Q. 28 (3)
Q. 29 (3)
Q. 30 (2)
Q. 31 (3)
Q. 32 (3)
Q. 33 (4)
Q. 34 (1)
Q. 35 (1)

JEE-MAIN
OBJECTIVE QUESTIONS
Q. 1 (4)
$\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$
$+2+2 x+(-14)=0$
$x=+6$
Q. 2 (3)
Q. 3 (4)
$\mathrm{H}_{2} \mathrm{SO}_{3}=+4$

$$
\begin{aligned}
& \mathrm{SO}_{2}=+4 \\
& \mathrm{H}_{2} \underline{S O}_{4}=+6 \\
& \mathrm{H}_{2} \mathrm{~S}=-2
\end{aligned}
$$

Q. 4 (1)
$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
$+2+2 x+(-14)=0$
$2 \mathrm{x}=12$
$\mathrm{x}=+6$
KMnO_{4}
$+1+x+(-8)=0$
$\mathrm{x}=7$
Q. 5 (4)
$\mathrm{F}_{2} \mathrm{O}$
Q. 6 (3)
Q. 7 (4)

$$
\mathrm{ZnS}+\mathrm{HNO}_{3} \longrightarrow \mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{NO}_{2}
$$

$$
\begin{equation*}
(+2)(-2) \quad(+5) \tag{+6}
\end{equation*}
$$

$$
\begin{equation*}
(+2) \tag{+4}
\end{equation*}
$$

+6)
Q. 8 (1)

$$
\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+14 \mathrm{H}^{+}+6 \mathrm{e}^{-} \longrightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}
$$

$\left(\mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow \mathrm{O}_{2}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-}\right) \times 3$
$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+8 \mathrm{H}^{+}+3 \mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{O}_{2}$
The reaction practically occurs with this stoichiometry.
Q. 9 (1)

In the above reaction $\mathrm{C}_{2} \mathrm{O}_{4}^{-2}$ acts as a reductant because it is oxidised to CO_{2} as :
$\mathrm{C}_{2} \mathrm{O}_{4}{ }^{-2} \rightarrow 2 \mathrm{CO}_{2}+2 \mathrm{e}^{-}$(oxidation) $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{-2}$ reduces MnO_{4}^{-}to Mn^{+2} ion in solution.
Q. 10 (3)

Let the O.N.of Co be x
O.N. of NH_{3} is zero
O.N. of Cl is -1
O.N. of Br is -1

Hence, $\mathrm{x}+6(0)-1 \times 2-1=0$
$\therefore \mathrm{x}=+3$
so, the oxidation number of cobalt in the given complex compound is +3 .
Q. 11 (3)

In the reaction $\mathrm{P}_{2} \mathrm{O}_{5} \rightarrow \mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$ The O.N. of P in $\mathrm{P}_{2} \mathrm{O}_{5}$ is $2 \mathrm{x}+5(-2)=0$ or $\mathrm{x}=+5$

The O.N. of P in $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$ is $4(+1)+2(\mathrm{x})+7(-2)=$ 0

$$
2 x=10 \text { or } x=+5
$$

Since there is no change in O.N. of P, hence the above reaction is neither oxidation nor reduction.
Q. 12 (1)

In $\mathrm{KI}_{3} \quad 1+3 \times(\mathrm{a})=0$
$\mathrm{a}=-\frac{1}{3}$
or KI_{3} is $\mathrm{KI}+\mathrm{I}_{2}$
\therefore I has two oxidation no. -1 and 0 respectively. However factually speaking oxidation number of I in KI_{3} is on average of two values -1 and 0 .
Average O.N. $=\frac{-1+2 \times(0)}{3}=-\frac{1}{3}$.
Q. 13 (2)
Q. 14 (2)
Q. 15 (3)
Q. 16 (1)
Q. 17 (3)

Valency factor ratio is inversely related to molar ratio. (V.f.) $\mathrm{HI}:(\mathrm{V} . f.) \mathrm{HNO}_{3}=1: 3=2: 6 \therefore$ Molar ratio $=6$: 2
Q. 18 (1)

$$
\begin{aligned}
& \mathrm{MnO}_{4}^{-}+\mathrm{C}_{2} \mathrm{O}_{4}^{2-}+\mathrm{H}^{+} \longrightarrow \mathrm{Mn}^{2+}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \\
& \text { V.f. }=5 \\
& \begin{array}{l}
\text { V.f. }=2
\end{array} \\
& \longrightarrow 2 \mathrm{Mn}^{2+}+10 \mathrm{CO}_{2}+8 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

Q. 19 (1)
Q. 20 (1)
Q. 21 (2)

In this $+2 \rightarrow+5$ (Oxidation)
Hence Nitric oxide act as reducing agent
Q. 22 (1)
Q. 23 (1)

Balance reaction is
$2 \mathrm{KMnO}_{4}+5 \mathrm{H}_{2} \mathrm{O}_{2}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow 2 \mathrm{MnSO}_{4}+5 \mathrm{O}_{2}+$ $8 \mathrm{H}_{2} \mathrm{O}+\mathrm{K}_{2} \mathrm{SO}_{4}$
\therefore Sum of stoichiometric coefficients $=2+5+3+2+$ $5+8+1=26$
$2 \mathrm{MnO}+5 \mathrm{PbO}_{2}+10 \mathrm{HNO}_{3} \longrightarrow 2 \mathrm{HMnO}_{4}+5 \quad \mathbf{Q . 3 8}$
$\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}+4 \mathrm{H}_{2} \mathrm{O}$
Q. 25 (4)
Q. 26 (4)
Q. 27 (1)

$$
\begin{array}{ll}
\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} & \underline{\mathrm{Cr}_{2} \mathrm{O}_{3}+\mathrm{N}_{2}+4 \mathrm{H}_{2} \mathrm{O}} \\
\text { O.S. of } \mathrm{N}=-3
\end{array} \quad \begin{aligned}
& \text { O.S. of } \mathrm{Cr}=+3
\end{aligned}
$$ O.S. of $\mathrm{Cr}=+6$

Q. 28 (1)
Q. 29 (1)
Q. 30 (3)
$\mathrm{Fe}(\mathrm{CO})_{5}$
O.S. = O
Q. 31 (2)
Q. 32 (3)
O.S. of $\mathrm{N}=0$
Q. 32 (3)
Q. 1 (D)
Q. 2 (B)

Q. 3 (D)

Q. 4 (B)
Q. 5 (B)

$$
\mathrm{n} \text { factor for } \mathrm{Mn}^{+3}=1 / 2
$$

Q. 33 (1)
Q. 34 (1)

$$
\text { n.F. }=3
$$

$$
\text { equivalent wt. of } \mathrm{FeC}_{2} \mathrm{O}_{4}=\mathrm{M} / 3
$$

Q. 35 (1)

$$
\underset{+5}{\mathrm{BrO}_{3}^{-} \longrightarrow}{ }_{0}^{\mathrm{Br}}
$$

\therefore (V.f.) $\mathrm{BrO}_{3}^{-}=5$
$\therefore \mathrm{Eqwt}=\mathrm{M} / 5$
Q. 36 (1)

In this reaction $\mathrm{H}_{2} \mathrm{SO}_{4}$ is providing only $1 \mathrm{H}^{+}$therefore, its n-factor $=1$ and equivalent mass $=\frac{98}{1}$.
Q. 37 (1)

Given $E_{\text {metal }}=2 \times 8=16$
$\frac{\text { Weight }_{\text {oxide }}}{\text { Weight }_{\text {metal }}}=$?
$\mathrm{eq}_{\text {metal }}=\mathrm{eq}_{\text {oxide }}$
$\frac{\mathrm{w}_{\text {metal }}}{16}=\frac{\mathrm{w}_{\text {oxide }}}{16+8} \quad \therefore \frac{\mathrm{w}_{\text {oxide }}}{\mathrm{w}_{\text {metal }}}=\frac{24}{16}=\frac{3}{2}=$
1.5

Eq. of $\mathrm{NaH}_{2} \mathrm{PO}_{3}+$ Eq. of $\mathrm{NaHCO}_{3}=$ Eq. of NaOH

$$
\begin{aligned}
& \frac{20 \times 0.1}{1000} \times 1+\frac{40 \times 0.1}{1000} \times 1=x \\
& x=6 \times 10^{-3}
\end{aligned}
$$

JEE-ADVANCED

OBJECTIVE QUESTIONS

$$
\begin{aligned}
& x+(0)+(-3)=-1 \\
& x=+2
\end{aligned}
$$

$\mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6} \quad \mathrm{O} . \mathrm{S}=2.5$
$2 \mathrm{x}+(-8)+0+0=-2$
$\mathrm{x}=+3$
Q. 6 (A)

Q. 7 (A)
Q. 8 (B)
$\mathrm{Na}_{2} \mathrm{~W}_{4} \mathrm{O}_{13} \cdot 10 \mathrm{H}_{2} \mathrm{O}$
$+2+4 \mathrm{x}+(-26)+0=0$
$x=+6$
Q. 9 (C)
$-1 / 2=$ oxidation state of oxygen, so it will form superoxide
Q. 10 (A)
$\mathrm{F}_{\mathrm{e}_{0.93}} \mathrm{O}$
$0.93 x+(-2)=0$
$x=\frac{200}{93}$
Q. 11 (A)

In the above reaction $\mathrm{C}_{2} \mathrm{O}_{4}^{-2}$ acts as a reductant because it is oxidised to CO_{2} as :

$$
\mathrm{C}_{2} \mathrm{O}_{4}^{-2} \rightarrow 2 \mathrm{CO}_{2}+2 \mathrm{e} \text { (oxidation) }
$$

$\mathrm{C}_{2} \mathrm{O}_{4}{ }^{-2}$ reduces MnO_{4}^{-}to Mn^{+2} ion in solution.
Q. 12 (C)
$\mathrm{AS}_{2} \mathrm{~S}_{3}+28 \mathrm{H}^{+}+\mathrm{NO}_{3}{ }^{-} \rightarrow \mathrm{NO}+14 \mathrm{H}_{2} \mathrm{O}+\mathrm{ASO}_{4}^{-}$
Q. 13 (D)

$$
\begin{array}{ll}
\mathrm{CrO}_{4}^{-2} \longrightarrow \\
x+(-8)=-2 \\
x=+6
\end{array} \quad \begin{aligned}
& \mathbf{C r}_{2} \mathbf{O}_{7}^{-2} \\
& 2 \mathrm{x}+(-14)=-2 \\
& \mathrm{x}=+6
\end{aligned}
$$

$5+\mathrm{SO}_{4}{ }^{2-}$
Equivalent wt. of $\mathrm{AS}_{2} \mathrm{~S}_{3}=\frac{\mathrm{M}}{28}$
Q. 21 (D)

If we assume $\mathrm{XeF}=100$
$\mathrm{Xe}=53.3 \%$
$\mathrm{F}=100-53.3=46.70$
$\mathrm{F}===6.16$
formula $=\mathrm{XeF}_{6}$

Q. 22 (D)

Acidic $\quad \mathrm{MnO}_{4}^{-} \rightarrow \mathrm{M}^{+2} \mathrm{n} . \mathrm{F}=$
5
Basic
$\mathrm{MnO}_{4}{ }^{-} \rightarrow \mathrm{MnO}_{4}{ }^{-2}$
n.F. $=1$

Neutral $\quad \mathrm{MnO}_{4}^{-} \rightarrow \mathrm{MnO}_{2}$ n.F. $=3$
Equivalent wt. of in acidic basic : neutral

$$
\begin{aligned}
& 23.8: 120: 40 \\
& 3: 15: 5
\end{aligned}
$$

\therefore To produce 18.6 gm (or 1 mole) aniline absorbed number of moles of electron in above reaction

$$
=\frac{6}{93} \times 18.6 \Rightarrow 1.2
$$

Ans.
Q. 18 (C)
O.N. of. Fe in wustite is $=\frac{200}{93}=2.15$

It is an intermediate value in between Fe (II) \& Fe (III)

Let \% of Fe (III) be a, then

$$
\begin{aligned}
& 2 \times(100-a)+3 \times \mathrm{a}=2.15 \times 100 \\
& \mathrm{a}=15.05 \\
& \therefore \% \text { of } \mathrm{Fe}(\mathrm{III})=15.05 \%
\end{aligned}
$$

Q. 19 (A)

$$
\mathrm{O}_{2}+\mathrm{FeS}_{2} \longrightarrow \mathrm{FeO}+\mathrm{SO}_{2}
$$

Oxidation half reaction :

$$
\begin{equation*}
\mathrm{S}_{2}{ }^{2-} \longrightarrow 2 \mathrm{~s}^{4+}+10 \mathrm{e}^{-} \tag{i}
\end{equation*}
$$

Reduction half reaction :

$$
\begin{equation*}
4 \mathrm{e}^{-}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{O}^{2-} \tag{ii}
\end{equation*}
$$

So, on doing $2 \times$ (i) +5 (ii)
$\therefore 2 \mathrm{~S}_{2}{ }^{2-}+5 \mathrm{O}_{2} \longrightarrow 4 \mathrm{~s}^{4+}+10 \mathrm{O}^{2-}$
$2 \mathrm{FeS}_{2}+5 \mathrm{O}_{2} \longrightarrow 4 \mathrm{SO}_{2}+2 \mathrm{FeO}$
\because Since one molecule of FeS_{2} liberates 10 electrons
So 2 moles of FeS_{2} required to liberate 20 mole e^{-}.
Q. 20 (C)
Q. 23 (D)

Equivalent wt. = Molecular weight
Due to non ionization of Mohr's salt
Q. 24 (A)
$\mathrm{K}_{4} \mathrm{Fe}(\mathrm{CN})_{6}+\mathrm{FeCl}_{3} \longrightarrow \mathrm{KFe}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]+3 \mathrm{KCl}$
$\mathrm{n}=3 \quad \mathrm{n}=3$
$\mathrm{K}_{4} \mathrm{Fe}(\mathrm{CN})_{6}+\mathrm{FeCl}_{2} \longrightarrow \mathrm{~K}_{2} \mathrm{Fe}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]+2 \mathrm{KCl}$
$\mathrm{n}=2 \quad \mathrm{n}=2$
$(\mathrm{MV})_{\mathrm{K}_{4} \mathrm{Fe}(\mathrm{CN})_{6}}=(\mathrm{MV})_{\mathrm{FeCl}_{3}}$
$10 \times M_{1}=M_{2} \times 10$
$(\mathrm{MV})_{\mathrm{K}_{4} \mathrm{Fe}(\mathrm{CN})_{6}}=(\mathrm{MV})_{\mathrm{FeCl}_{2}}$
$10 \times \mathrm{M}_{1}=0.5 \times 20$
$\mathrm{M}_{\mathrm{FeCl}_{3}}=1 \mathrm{M} \quad$ Ans.
Q. 25 (C)
$\mathrm{KMnO}_{4}+\mathrm{FeS}_{2}+\mathrm{CuS} \longrightarrow \mathrm{Cu}^{+2}+\mathrm{Fe}^{+3}+\mathrm{SO}_{2}$

$$
\mathrm{n}=11 \quad \mathrm{n}=6
$$

Eq. of $\mathrm{KMnO}_{4}=$ Eq. of $\mathrm{FeS}_{2}+$ Eq. of CuS
$\frac{\mathrm{N} \times \mathrm{V}}{1000}=\frac{\mathrm{MV}_{\mathrm{FeS}_{2}}}{1000} \times \mathrm{n}+\frac{\mathrm{MV}_{\mathrm{CuS}}}{1000} \times \mathrm{n}$
$\frac{\mathrm{N} \times 20}{1000}=\frac{10 \times 1}{1000} \times 11+\frac{20 \times 1 \times 6}{1000}$
$\mathrm{N}=\frac{110+120}{20}=\frac{230}{20}=11.5 \mathrm{~N}$ Ans.
Q. 26 (A)
$\mathrm{S} \rightarrow \mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}+\mathrm{S}^{-2}$
n-factor of $S=\frac{2 \times 2}{2+2}=1$
$\left.\mathrm{E}=\frac{\text { Atomic weight }}{\mathrm{V} / \mathrm{F} / \mathrm{n}-\text { factor }}=\frac{32}{1}\right]$

Q. 27 (B)

m eq of $\mathrm{KMnO}_{4}=0.1 \times 5 \times \mathrm{V}=0.5 \mathrm{~V}$
\& m eq $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}=0.1 \times 6 \times \mathrm{V}=0.6 \mathrm{~V}$
So, $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ will oxidise more Fe^{2+}
Q. 28 (B)
$\underline{\mathrm{MnO}}{ }_{4}^{-}+\mathrm{Fe}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{Mn}^{+2}$
$x=+7 \xrightarrow{\text { n.F. }=5 e^{\Theta}} x=+2$
Eq. wt of $\mathrm{KMnO}_{4}=\mathrm{M} / 5$
Q. 29 (A)
m. eq. of $\mathrm{H}_{2} \mathrm{SO}_{4}=\mathrm{m}$. eq. of $\mathrm{Na}_{2} \mathrm{CO}_{3}$
$0.1 \times \frac{V}{1000}=\frac{0.125}{106} \times 2$
$\mathrm{V}=23.6 \mathrm{~mL}$
Q. 30 (D)

Milli equivalents of $\mathrm{FeC}_{2} \mathrm{O}_{4}=0.1 \times 3 \times 25=7.5$
From choice (D), milli equivalents of $\mathrm{KMnO}_{4}=0.1$ $\times 5 \times 15=7.5$
\therefore m. eq. of $\mathrm{FeC}_{2} \mathrm{O}_{4}=$ m. eq. of KMnO_{4}
Q. 31 (B)
$1.68 \times 10^{-3} \times 6=3.36 \times 10^{-3} \times \mathrm{x}$
$\mathrm{x}=3$
So, oxidation number of A increases by 3 .
\therefore New oxidation number of $\mathrm{A}=-\mathrm{n}+3=3-\mathrm{n}$.

Q. 32 (A)

Equivalent of $\mathrm{KMnO}_{4}=$ Eq. of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{OH}$
$0.0162 \times \mathrm{V} \times 5=.022 \times 2 \times 25$
$\mathrm{V}=\frac{0.022 \times 2 \times 25}{.0162}=13.6 \mathrm{ml}$
Q. 33 (D)

Let Z undergoes change in oxidation number from n_{1} to $\mathrm{n}_{2}\left(\mathrm{n}_{2}>\mathrm{n}_{1}\right)$ as a result of reaction with KMnO_{4}.
\therefore meq of $\mathrm{Z}=$ meq of KMnO_{4}
$0.1 \times 25 \times\left(\mathrm{n}_{2}-\mathrm{n}_{1}\right)=0.04 \times 25 \times 5$
$\therefore \mathrm{n}_{2}-\mathrm{n}_{1}=2$
Hence, the oxidation number of Z increases by 2 .
\therefore change $=\left(\mathrm{Z}^{2+} \rightarrow \mathrm{Z}^{4+}\right)$.
Q. 34 (A)
$\mathrm{CI}^{-}+\mathrm{MnO}_{4}^{-} \longrightarrow \mathrm{Mn}^{+2}+\mathrm{CI}_{2}$
Eq of $\mathrm{Cl}_{2}=\mathrm{Eq}$ of KMnO_{4}
$2\left[\right.$ mole of $\left.\mathrm{CI}_{2}\right]=5\left[\frac{10}{158}\right]$
mole of $\mathrm{CI}_{2}=\frac{50}{2 \times 158}=0.15823 \mathrm{~mole}$
volume of CI_{2} at $\mathrm{STP}=0.15823 \times 22.4=3.54 \mathrm{~L}$
Q. 35 (B)
Q. 36 (B)
Q. 37 (C)
$\mathrm{KMnO}_{4}+\mathrm{FeS}_{2}+\mathrm{CuS} \longrightarrow \mathrm{Cu}^{+2}+\mathrm{Fe}^{+3}+\mathrm{SO}_{2}$

$$
\mathrm{n}=11 \quad \mathrm{n}=6
$$

Eq. of $\mathrm{KMnO}_{4}=$ Eq. of $\mathrm{FeS}_{2}+$ Eq. of CuS
$\frac{\mathrm{N} \times \mathrm{V}}{1000}=\frac{\mathrm{MV}_{\mathrm{FeS}_{2}}}{1000} \times \mathrm{n}+\frac{\mathrm{MV}_{\mathrm{CuS}}}{1000} \times \mathrm{n}$
$\frac{\mathrm{N} \times 20}{1000}=\frac{10 \times 1}{1000} \times 11+\frac{20 \times 1 \times 6}{1000}$
$\mathrm{N}=\frac{110+120}{20}=\frac{230}{20}=11.5 \mathrm{~N}$ Ans.

Q. 38 (B)

2 moles of $\mathrm{Cu}^{2+}=1$ mole of $\mathrm{I}_{2}=2$ moles of hypo. so moles of hypo used $=20 \times 10^{-3} \times 0.1=2$ moles $=$ moles of copper hence
$\%$ of copper $=\frac{2 \times 10^{-3} \times 63.5}{0.2} \times 10 \%=63.5 \%$
Q. 39 (1)

Likewise in $\mathrm{Br}_{3} \mathrm{O}_{8}$, each of the two terminal bnromine stoms are present in $\mathbf{+ 6}$ oxidation state and the middle bromine is present in $\mathbf{+ 4}$ oxidation state. Once again the average, that is different from reality, is $+16 / 3$.

Q. 8 (A,B,C,D)
equivalent of oxidising agent $=$ equivalents of reducing agent.
$E q_{\mathrm{MnO}_{4}^{-}}=E q_{\mathrm{Fe}^{2+}}$
$\mathrm{n}_{\mathrm{MnO}_{4}^{-}} \times 5=\mathrm{n}_{\mathrm{Fe}^{2+}} \times 1$
$\mathrm{Eq}_{\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}}=\mathrm{Eq}_{\mathrm{Fe}^{2+}}$
$\mathrm{n}_{\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}} \times 6=\mathrm{n}_{\mathrm{Fe}^{2+}} \times 1$
$E q_{\mathrm{MnO}_{4}^{-}}=E q_{\mathrm{Cu}_{2} \mathrm{~s}}$
$\mathrm{n}_{\mathrm{MnO}_{4}^{-}} \times 5=\mathrm{n}_{\mathrm{Cu}_{2} \mathrm{~S}} \times 8$
$\mathrm{Eq}_{\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}}=\mathrm{Eq}_{\mathrm{Cu}_{2} \mathrm{~S}}$
$\mathrm{n}_{\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}} \times 6=\mathrm{n}_{\mathrm{Cu}_{2} \mathrm{~S}} \times 8$
Q. 9
(A,B,C,D)
For $\mathrm{HCl} \mathrm{N}=\mathrm{M}$
Final molarity $=\frac{V_{1} \times 1+V_{2} \times 0.25}{\left(V_{1}+V_{2}\right)}=0.75$
$0.75\left(\mathrm{~V}_{1}+\mathrm{V}_{2}\right)=\mathrm{V}_{1}+\mathrm{V}_{2} \times 0.25$
$0.75 \mathrm{~V}_{1}+0.75 \mathrm{~V}_{2}=\mathrm{V}_{1}+\mathrm{V}_{2} \times 0.25$
$0.5 \mathrm{~V}_{2}=0.25 \mathrm{~V}_{1}$
$\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}=2$ (All options are possible)
Q. 10 (A,C,D)
milli equivalent of $\mathrm{KMnO}_{4}=25 \times 0.2=5 \mathrm{meq}$.
$(\mathrm{A}) \mathrm{Fe}^{2+} \longrightarrow \mathrm{Fe}^{3+}$ milli equivalent of $\mathrm{FeSO}_{4}=25 \times 0.2 \times 1=0.2 \times 25=5$ (same)
(B) $\mathrm{H}_{3} \mathrm{AsO}_{3} \longrightarrow \mathrm{H}_{3} \mathrm{AsO}_{4}$
milli equivalent of $\mathrm{H}_{3} \mathrm{AsO}_{3}=2 \times 50 \times 0.1=10$ (not same)
(C) $\mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow 2 \mathrm{H}^{+}+\mathrm{O}_{2}$ milli equivalent of $\mathrm{H}_{2} \mathrm{O}_{2}=25 \times 0.1 \times 2=5$ (same)
(D) $\mathrm{Sn}^{2+} \longrightarrow \mathrm{Sn}^{4+}$
milli equivalent of $\mathrm{SnCl}_{2}=25 \times 0.1 \times 2=5$ (same)
Q. 11
....(2)
Divide (1) and (2)
$\frac{0.02 \times 100 \times 5}{0.05 \times 100 \times 2}=\frac{2 x}{y} \Rightarrow 1=\frac{2 x}{y} \Rightarrow 2 x=y$
Q. 7 (A,C)
(A) $6 \mathrm{M}_{1} \mathrm{~V}_{1}=\mathrm{M}_{2} \mathrm{~V}_{2}\left[\because\right.$ For $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$, Eq. wt. $\left.=\frac{\mathrm{M} \cdot \mathrm{wt}}{6}\right]$
(C) $\mathrm{N}_{1} \mathrm{~V}_{1}=\mathrm{N}_{2} \mathrm{~V}_{2}$
(B) and (D) are not possible.

(A,B,D)					
$\mathrm{Cu}_{2} \mathrm{~S}$	$+$	I_{2}	\rightarrow	Cu^{+2}	+
SO_{4}^{-2}	+	I^{-}	(1)	
$\left(\mathrm{n}_{\mathrm{f}}=10\right)\left(\mathrm{n}_{\mathrm{f}}=2\right)$					
CuS	+	I_{2}	\rightarrow	Cu^{+2}	+
$\mathrm{SO}_{4}{ }^{-2}$	+	I^{-}	(2)	
$\left(\mathrm{n}_{\mathrm{f}}=8\right)$		$\left(\mathrm{n}_{\mathrm{f}}=2\right)$			
I_{2}	$+$	$\mathrm{S}_{2} \mathrm{O}_{3}{ }^{-2}$	\rightarrow	I^{-}	+
$\mathrm{S}_{4} \mathrm{O}_{6}{ }^{-2}$			(3)	
$\left(\mathrm{n}_{\mathrm{f}}=2\right)$		$\left(\mathrm{n}_{\mathrm{f}}=1\right)$			
$\left(\mathrm{n}_{\mathrm{f}}=2\right)$					

In reaction (1):
Meq of $\mathrm{Cu}_{2} \mathrm{~S}=$ Meq of I_{2}
$0.5 \times 10 \times \mathrm{V}=250 \times 1 \times 2$
$\mathrm{V}=100 \mathrm{ml}\left(\right.$ of $\left.\mathrm{Cu}_{2} \mathrm{~S}\right)$
In reaction (2) :
Meq of $\mathrm{CuS}=$ Meq of I_{2}
$0.5 \times 8 \times \mathrm{V}_{\mathrm{CuS}}=250 \times 1 \times 2$
$\mathrm{V}_{\mathrm{CuS}}=125 \mathrm{ml}$
eQ.wt of $\mathrm{I}_{2}=\frac{\mathrm{mol} . \mathrm{wt}}{\mathrm{n}_{\mathrm{f}}}=\frac{254}{2}=127$
Q. 12 (A,C,D)
$\mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2} \longrightarrow \mathrm{BaSO}_{4} \downarrow+2 \mathrm{NaNO}_{3}$ $4 \times 10^{-3} \quad \mathrm{~V} \times 4 \times 10^{-3} \quad$ ppt. $2 \times 4 \mathrm{~V} \times 10^{-3}$ 0
$\mathrm{M}=\frac{8 \mathrm{~V} \times 10^{-3}}{5 \mathrm{~V}} \times 10^{-3}$
$=\frac{8}{5} \quad \Rightarrow \quad \mathrm{M}_{\mathrm{Na}^{+}}=\mathrm{M}_{\mathrm{NO}_{3}^{-}}=\frac{8}{5} \mathrm{M}$
Q. 13 (A,D)

1 mole $\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \longrightarrow 1$ mole $\mathrm{CaC}_{2} \mathrm{O}_{4}$ [from reaction (i)]
1 mole $\mathrm{CaC}_{2} \mathrm{O}_{4} \longrightarrow 1$ mole $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ [from reaction (ii)]
1 mole $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \longrightarrow 2 \mathrm{~mole}_{2} \mathrm{CO}_{2}$ [from reaction (iii)]
$\Rightarrow \mathrm{n}_{\mathrm{CO}_{2}}=2$
$U_{\mathrm{rms}}=\sqrt{\frac{3 R T}{M}}=\sqrt{\frac{3 P V}{n M}}$
For CO_{2} gas
$U_{\mathrm{rms}}=\sqrt{\frac{3 \mathrm{RT}}{\mathrm{M}_{\mathrm{CO}_{2}}}}=\sqrt{\frac{3 \mathrm{PV}}{2 \mathrm{M}_{\mathrm{CO}_{2}}}}$
Q. 14 (A,B,D)

No. of equivalents of $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}=20 \times 0.3 \times 10^{-3}=6 \times 10^{-3}$ eq.
No. of equivalents of I_{2} produced $=6 \times 10^{-3} \mathrm{eq}$.
No. of equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}=6 \times 10^{-3} \mathrm{eq}$.
Wt of $\mathrm{H}_{2} \mathrm{O}_{2}$ present in 25 ml of solution $=6 \times 10^{-3} \times 17$
$\left(\because\right.$ Eq. $\left.\mathrm{wt}_{2} \mathrm{O}_{2}=17\right) \quad=0.102 \mathrm{~g}$
Statement (A) is correct.
Wt of $\mathrm{H}_{2} \mathrm{O}_{2}$ in 1 L of the solution $=\frac{0.102 \times 1000}{25}=$ 4.08 g

Statement (C) is wrong.
\therefore molarity of $\mathrm{H}_{2} \mathrm{O}_{2}$ solution $=\frac{4.08}{34}=0.12 \mathrm{M}$

Statement (B) is correct.

$2 \mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow$	$2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$
2 mol	1 mol
0.12 mol	0.06 mol

Volume of O_{2} at NTP $=0.06 \times 22.4$ lit $=1.344$ lit Statement (D) is correct.

Comprehension \# 1 (Q. No. 15 to 17)

Q. 15 (C)
Q. 16 (C)
Q. 17 (B)

Comprehension \# 2 (Q. No. 18to 25)

Q. 18 (B)
Q. 19 (A)
Q. 20 (B)
Q. 21 (A)
Q. 22 (C)
Q. 23 (A)
Q. 24 (A)
Q. 25 (B)
$18 \quad \mathrm{Na}_{2}\left[\mathrm{Fe}(\mathrm{CN})_{5} \mathrm{No}\right]$
$+2+x+(-5)+(+1)=0$
$\mathrm{x}=+2$
$22 \quad \mathrm{~K}_{2} \mathrm{O}<\mathrm{K}_{2} \mathrm{O}_{2}<\mathrm{KO}_{2}<\mathrm{KO}_{3}$
$\begin{array}{llll}-2 & -1 & -1 / 2 & -1 / 3\end{array}$

23 Because F_{2} gain and get reduced, so act as oxidising agent.
$25 \quad \mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$
$x+(-2)=0$
$\mathrm{x}=+2$
Comprehension \# 3 (Q. No. 26 to 28)
Q. 26 (C)
Q. 27 (B)
Q. 28 (C)

26
$10 \mathrm{e}^{-}+2 \mathrm{MnO}_{4}^{-} \longrightarrow 2 \mathrm{Mn}^{2+} ;$ v.f. $=10$
\therefore Eq. mass of $\mathrm{Ba}\left(\mathrm{MnO}_{4}\right)_{2}\left(\mathrm{Ba}\left(\mathrm{MnO}_{4}\right)_{2}=\frac{\mathrm{M}}{10}\right.$
$27 \quad \mathrm{Fe}_{0.9} \mathrm{O}+\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \longrightarrow \mathrm{Fe}^{+3}+\mathrm{Cr}^{+3}$
n factor of $\mathrm{Fe}_{0.9} \mathrm{O}=0.9\left(3-\frac{2}{0.9}\right)=0.7$
\therefore Eq mass $=\frac{M}{0.7}=\frac{10 \mathrm{M}}{7}$
28 n factor is 2 for $\mathrm{CaC}_{2} \mathrm{O}_{4}$
Eq. weight $=\frac{M}{2}=\frac{128}{2}=64$.
Q. 34 (A)
$2 \mathrm{BaCl}_{2}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{-2} \xrightarrow{\mathrm{H}^{+}} 2 \mathrm{BaCrO}_{4}$
Moles of $\mathrm{BaCrO}_{4}=\frac{0.0549}{253}$
Moles of $\mathrm{Cr}_{2} \mathrm{O}_{7}^{-2}=\frac{0.0549}{253 \times 2}$
$\mathrm{MnO}_{4}^{-}+\mathrm{Fe}^{+2} \rightarrow \mathrm{Mn}^{+2}+\mathrm{Fe}^{+3}$
Step-I
$\mathrm{Cr}_{2} \mathrm{O}_{7}^{-2}+\mathrm{Fe}^{+2} \rightarrow \mathrm{Cr}^{+3}+\mathrm{Fe}^{+3}$
Step-II
Total millieq of $\mathrm{Fe}^{+2}=1.19$
millieq of Fe^{+2} in step-II $=$ millieq of $\mathrm{Cr}_{2} \mathrm{O}_{7}^{-2}=$
$\frac{0.0549}{253 \times 2} \times 6=0.65$
Total millieq of $\mathrm{Fe}^{+2}=$ millieq of Fe^{+2} in step $\mathrm{I}+$ millieq of Fe^{+2} in step II $1.19=$ I step +0.65
millieq of Fe^{+2} in step-I
equivalent of $\mathrm{Fe}^{+2}=5.44 \times 10^{-4}$
Q. 35 (C)

Moles of BaCrO_{4} in 250 ml solution $=$ moles of $\mathrm{BaCl}_{2}=$
$\frac{0.0549}{253 \times 2} \times 25$
wt. of $\mathrm{BaCl}_{2}=\frac{0.0549}{253} \times 25 \times 208 \approx 1.125$

Comprehension \# 6 (Q. No. 36 to 38)

Q. 36 (C)
Q. 37 (D)
Q. 38 (B)

36 Let V mL of $\mathrm{H}_{2} \mathrm{O}_{2}$ is taken
Normality $=\frac{20}{5.6}$
meq of $\mathrm{H}_{2} \mathrm{O}_{2}=$ meq of I_{2} liberated $=$ meq of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$
$\mathrm{V} \frac{20}{5.6}=200 \times 0.1 \Rightarrow \quad \mathrm{~V}=5.6 \mathrm{~mL}$

37 meq of $\mathrm{H}_{2} \mathrm{O}_{2}=$ meq of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
$5.6 \times \frac{20}{5.6}=\frac{x}{294} \times 6 \times 1000$
$\mathrm{x}=\frac{20 \times 294}{6 \times 1000}=0.98$
\therefore Mass of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ needed is 0.98 g
$1000 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow$ liberates $20 \mathrm{~L} \mathrm{O}_{2}$ at STP
$\therefore 1 \mathrm{mLH}_{2} \mathrm{O}_{2} \longrightarrow \frac{20}{1000} \times 1000 \mathrm{mLO}_{2}$
$\therefore 5.6 \longrightarrow 20 \times 5.6 \mathrm{~mL}$ of $\mathrm{O}_{2}=112 \mathrm{~mL}$ of O_{2}

Comprehension \# 7 (Q. No. 39 to 41)

Q. 39 (BC)
Q. 40 (A)
Q. 41 (A)
$39 \quad \mathrm{I}_{2} \rightarrow \mathrm{I}^{-}$(Reduction)
(O.A.)
$\mathrm{S}_{2} \mathrm{O}_{3}^{-2} \rightarrow \mathrm{~S}_{4} \mathrm{O}_{6}^{-2}$
$+2+2.5$ (oxidation
(R.A.)

41

equivalent wt of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}=\mathrm{M} / 6$
Q. 42 (A) - p,s ; (B) - q, r ; (C) - p,q,s ; (D) - r
(A) Eq. of base $=N \times V_{L}=0.5 \times 0.2=0.1$

Eq. of $\mathrm{H}_{2} \mathrm{SO}_{3}=\frac{4.1}{82} \times 2=0.1$
Millimoles of O -atoms $=\left(\right.$ Millimoles of $\left.\mathrm{H}_{2} \mathrm{SO}_{3}\right) \times 3=$ $\left(\frac{4.1}{82} \times 1000\right) \times 3=150$
S is in +4 oxidation state $(\operatorname{Max}=+6)$
It may react with an oxidising agent and it may get oxidised from +4 to +6 .
(B) Eq of $\mathrm{H}_{3} \mathrm{PO}_{4}=\frac{4.9}{98} \times 3=0.15$

Millimoles of O -atoms $=\left(\right.$ Millimoles of $\left.\mathrm{H}_{3} \mathrm{PO}_{4}\right) \times 4=$ $\left(\frac{4.9}{98} \times 1000\right) \times 4=200$
P is in +5 oxidation state $(\mathrm{Max}=+5)$
It will not react with an oxidising agent as P is already in max O.S.
(C) Eq of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}=\frac{4.5}{90} \times 2=0.1$.

Millimoles of O -atoms $=\left(\right.$ Millimoles of $\left.\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right) \times 4=$
$\left(\frac{4.5}{90} \times 1000\right) \times 4=200$
C is in +3 oxidation state $(\mathrm{Max}=+4)$.
It may react with an oxidising agent and C may get oxidised from +3 to +4 .
(D) $\mathrm{Na}_{2} \mathrm{CO}_{3}$ is itself basic in nature, so it will not react with a base.
Millimoles of O -atoms $=\left(\right.$ Millimoles of $\left.\mathrm{Na}_{2} \mathrm{CO}_{3}\right) \times 3=$ $\left(\frac{5.3}{106} \times 1000\right) \times 3=150$.

C is in +4 oxidation state $(\operatorname{Max}=+4)$.
It will not react with an oxidising agent as C is already in max oxidation state.
Q. 43 (A) p,q; (B) r,s; (C) r, s; (D) p,q
(A) Container-I reacts with container-II n factor of $\mathrm{KI}=6$

KMnO_{4}	$\mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
$1 \times 5=\mathrm{x} \times 6$	$1 \times 6=\mathrm{x} \times 6$
$\mathrm{x}=\frac{5}{6}$	$\mathrm{x}=1$

(B) n factor of $\mathrm{Cu}_{2} \mathrm{~S}=8$
$\mathrm{KMnO}_{4} \quad \mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
$1 \times 5=x=8 \quad 1 \times 6=x \times 8$
$x=\frac{5}{8} \quad x=\frac{6}{8}=\frac{3}{4}$
(C) $\quad \mathrm{n}$ factor of $\mathrm{K}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}=8$ $\mathrm{KMnO}_{4} \quad \mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$

$$
x=\frac{5}{8} \quad x=\frac{3}{4}
$$

(D) $\quad \mathrm{n}$ factor of $\mathrm{NH}_{4} \mathrm{SCN}=6$

$$
\mathrm{KMnO}_{4} \quad \mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}
$$

$x=\frac{5}{6}$
$\mathrm{x}=1$

NUMERICAL VALUED BASED

Q. 13

$\mathrm{N}_{2} \mathrm{H}_{4} \rightarrow(\mathrm{Y})+10 \mathrm{e}^{-}$
(\because Y contains all N atoms)
$\therefore \mathrm{N}_{2}^{2-} \rightarrow(2 \mathrm{~N})^{\mathrm{x}}+10 \mathrm{e}^{-}$
$-4=2 x-10$
$\mathrm{x}=+3$
\therefore oxidation state of N in Y is +3

(balanced skelton) $2 \mathrm{CrCl}_{3}+3 \mathrm{H}_{2} \mathrm{O}_{2}+10 \mathrm{NaOH} \longrightarrow$ $2 \mathrm{Na}_{2} \mathrm{CrO}_{4}+6 \mathrm{H}_{2} \mathrm{O}+6 \mathrm{NaCl}+2 \mathrm{H}_{2} \mathrm{O}$
$2 \mathrm{CrCl}_{3}+3 \mathrm{H}_{2} \mathrm{O}_{2}+10 \mathrm{NaOH} \longrightarrow 2 \mathrm{Na}_{2} \mathrm{CrO}_{4}+6 \mathrm{NaCl}+$ $8 \mathrm{H}_{2} \mathrm{O}$
$\Rightarrow \quad \mathrm{a}=2 \quad \mathrm{~b}=3 \quad$ and $\mathrm{c}=10$
Q. 310
$\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4} \xrightarrow[16 \mathrm{ml}]{\mathrm{KMnO}_{4}} \mathrm{NO}_{3}^{-}+\mathrm{PH}_{3}$
$\begin{array}{llll}-3 & +5 & +5 & -3\end{array}$
$+24-8=16$
$50 \times 0.2 \mathrm{M}$
n -factor of KMnO_{4} in acidic medium $=5$
n-factor of $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}=16$
Eq. of $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}=\mathrm{Eq}$. of KMnO_{4}
$\frac{0.2 \times 50}{1000} \times 16=\frac{\mathrm{N} \times 16}{1000}$
$\mathrm{N}=10$ Ans.
Q. $4 \quad 12$

Balanced reaction

\because To produce 93 gm (or 1 mole) aniline absorbed number of moles of electron in above reaction $=6$
\therefore To produce 18.6 gm (or 1 mole) aniline absorbed number of moles of electron in above reaction

$$
=\frac{6}{93} \times 18.6 \Rightarrow 1.2
$$

$$
\Rightarrow 10 x=1.2 \times 10=12
$$

Q. $5 \quad 7$
$\mathrm{Fe}^{+2} \longrightarrow \mathrm{Fe}^{3+}+\mathrm{e}^{-}$
$\mathrm{Cr}_{2}{ }^{6+} \longrightarrow \mathrm{Cr}^{+6}+6 \mathrm{e}^{-}$
$\mathrm{FeCr}_{2} \mathrm{O}_{4} \longrightarrow \mathrm{Fe}_{2} \mathrm{O}_{3} \mathrm{~K}_{2} \mathrm{CrO}_{4}+7 \mathrm{e}^{-}$
Q. $6 \quad 30$

Redox titration
Eq. of $\mathrm{K}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot 4 \mathrm{H}_{2} \mathrm{O}=\mathrm{Eq}$. of KMnO_{4}
$\frac{0.1 \times \mathrm{V}}{1000}=\frac{20 \times 0.05 \times 5}{1000}$
$\mathrm{V}=50 \mathrm{ml}$
n factor of $\mathrm{K}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot 4 \mathrm{H}_{2} \mathrm{O}$
for redox titration $=8$
for acid base titration $=6$
\therefore for acid base titration normality of
$\mathrm{K}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot 4 \mathrm{H}_{2} \mathrm{O}=\frac{0.1}{8} \times 6 \mathrm{~N}$
Eq. of acid = Eq. of base
$\frac{0.1 \times 50}{8 \times 1000} \times 6=\frac{1}{8} \times \frac{\mathrm{Vml}}{1000}$
$\mathrm{Vml}=30 \mathrm{ml}$ Ans.
Q. 76

Eq. of $\mathrm{NaH}_{2} \mathrm{PO}_{3}+$ Eq. of $\mathrm{NaHCO}_{3}=\mathrm{Eq}$. of NaOH
$\frac{20 \times 0.1}{1000} \times 1+\frac{40 \times 0.1}{1000} \times 1$
$=6 \times 10^{-3}$
$\mathrm{x}=6 \quad$ Ans.]
Q. $8 \quad 6$
$2 \mathrm{BrO}_{3}^{-}+10 \mathrm{Br}^{-}+12 \mathrm{HCl} \longrightarrow 6 \mathrm{Br}_{2}+6 \mathrm{H}_{2} \mathrm{O}+12 \mathrm{Cl}^{-}$
Mol of $\mathrm{Br}_{2}=\frac{21 \times 2}{2}=21 \mathrm{~m} \mathrm{~mol}$
No. of eq. of Br_{2} produced in $1^{\text {st }}$ Reaction $=21 \times \frac{5}{3}=35$
meq.
$\therefore 70 \times \mathrm{M} \times \frac{10}{12}=35$
$M=\frac{6}{10}$
$\mathrm{x}=6 \quad$ Ans.
Q. $9 \quad 90$
milli equivalent of $\mathrm{H}_{3} \mathrm{PO}_{4}=$ milli equivalent of $\mathrm{Ba}(\mathrm{OH})_{2}$
$120 \times 1.5 \times 3=\mathrm{V} \times 3 \times 2$
So, $\mathrm{V}=\mathbf{9 0} \mathbf{~ m L}$

Q. $10 \quad 2$

meq of $\mathrm{Na}_{2} \mathrm{SO}_{3}=$ meq of salt
$25 \times 0.1 \times 2=50 \times 0.1 \times x \quad \Rightarrow \quad x=1$
So, oxidation number of metal decreases by 1 .
$\therefore \quad$ New oxidation number of metal $=3-1=2$.

Q. 112

$\mathrm{Ni}(\mathrm{CO})_{4} \xrightarrow{\Delta} \mathrm{Ni}+4 \mathrm{CO}$
$5 \mathrm{CO}+\mathrm{I}_{2} \mathrm{O}_{5} \rightarrow \mathrm{I}_{2}+5 \mathrm{CO}_{2}$
$2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}+\mathrm{I}_{2} \rightarrow 2 \mathrm{I}^{-}+\mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}$
so moles of I_{2} produced $=4$ moles
so moles of hypo used $=8$ moles $=(4 \mathrm{M})(2$ litres $)$.
$\mathrm{Ni}(\mathrm{CO})_{4} \xrightarrow{\Delta} \mathrm{Ni}+4 \mathrm{CO}$
$5 \mathrm{CO}+\mathrm{I}_{2} \mathrm{O}_{5} \rightarrow \mathrm{I}_{2}+5 \mathrm{CO}_{2}$
$2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}+\mathrm{I}_{2} \rightarrow 2 \mathrm{I}^{-}+\mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}$
Q. 124

$$
\mathrm{Mg}-2 \mathrm{e}^{-} \longrightarrow \mathrm{Mg}^{2+}
$$

equivalents $=$ moles $\times \mathrm{n}$-factor

$$
\begin{aligned}
& =2 \times 2=4 \\
\mathrm{Mg}-2 \mathrm{e}^{-} & \longrightarrow \mathrm{Mg}^{2+} \\
= & 2 \times 2=4
\end{aligned}
$$

Q. $13 \quad 1$

22400 mL volume contains $=1$ mole gas
$\therefore 224 \mathrm{~mL}$ volume contains $=\frac{1}{22400} \times 224=\frac{1}{100}$
mole CO_{2}
Eq of $\mathrm{CO}_{2}=\mathrm{Eq}$ of HCl
$\frac{1}{100} \times 2=\frac{20}{1000} \times \mathrm{N}$
$\mathrm{N}=1 \mathrm{~N}$
Q. 1421
$3 \mathrm{Fe}+4 \mathrm{H}_{2} \mathrm{O} \longrightarrow \stackrel{+8 / 3}{\mathrm{Fe}_{3} \mathrm{O}_{4}}+4 \mathrm{H}_{2}$
$3 \mathrm{Fe}+4 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}+8 \mathrm{H}^{+}+8 \mathrm{e}^{-}$
V.F. of $\mathrm{Fe}=\frac{8}{3}$.
$\mathrm{E}_{\mathrm{Fe}}=\frac{\text { Atomic mass }}{\text { V.F. }}=\frac{56}{8 / 3}=21$.
Q. 1510 mL
$\mathrm{meq}_{\mathrm{Ca}(\mathrm{OH})_{2}}=\mathrm{meq}_{\mathrm{H}_{3} \mathrm{PO}_{4}}$
$0.05 \times \mathrm{V} \times 2=10 \times 0.1 \times 1$
$\mathrm{V}=10 \mathrm{~mL}$
Q. $16 \quad 68$
$85=\mathrm{E}_{\text {metal }}+\mathrm{E}_{\mathrm{OH}^{-}}$
or $85=\mathrm{E}_{\text {metal }}+17$
or $\mathrm{E}_{\text {metal }}=68$
Q. 1712
$40 \mathrm{~g}, \mathrm{O} \equiv 60 \mathrm{~g}$ metal
$\therefore \quad 8 \mathrm{~g}, \mathrm{O} \equiv 12 \mathrm{~g} \operatorname{metal}(\mathrm{E})$
Q. 1832
v.f. of $\mathrm{SO}_{2}=1(6-4)=2$
$\therefore \quad$ Eq. wt. $=\frac{\mathrm{M}}{2}=\frac{64}{2}=32$
Q. 1916

Valency factor of $\mathrm{K}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ is $2+3(2)=$ 8
(as we now that KMnO_{4} oxidises only $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ to CO_{2})
Now equivalent of $\mathrm{K}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot 4 \mathrm{H}_{2} \mathrm{O}=$ equivalent of MnO_{4}^{-}

$$
\frac{5.08}{508} \times 8=1 \times 5 \times \mathrm{V} \times \frac{1}{1000}
$$

so $\quad V=16 \mathrm{mLAns}$.

KVPY

PREVIOUS YEAR'S

Q. 1 (B)
$16 \mathrm{H}^{+}+2 \mathrm{MnO}_{4}^{-}+5 \mathrm{C}_{2} \mathrm{O}_{4}^{2-} \rightarrow 2 \mathrm{Mn}^{+2}+10 \mathrm{CO}_{2}+8 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{MnO}_{4}^{-}: \mathrm{C}_{2} \mathrm{O}_{4}^{2-}=2: 5$
$2 \mathrm{KMnO}_{4}+16 \mathrm{HCl} \rightarrow 2 \mathrm{KCl}+2 \mathrm{MnCl}_{2}+5 \mathrm{Cl}_{2}+8 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{MnO}_{4}^{-}: \mathrm{HCl}=2: 16=1: 8$
Q. 2 (B)

Equivalents of metal $=$ Equivalents of metal sulphate
wt. of metal wt. of metal sulphate
Eq.wt.of metal Eq.wt.metal sulphate
$\frac{2}{x}=\frac{6.8}{x+48}$
$6.8 x=2 x+96$
$4.8 x=96$
$x=\frac{96}{4.8}=20$
Q. 3 (A)
$\mathrm{N}_{1} \mathrm{~V}_{1}=\mathrm{N}_{2} \mathrm{~V}_{2}$
mili eq. of hypo $=0.25 \times 100$
mili eq. of hypo $=25$
eq. of hypo $=0.025$
mole of hypo $=0.025 \times 1 \quad \because \mathrm{~V}_{1} \times 1$
weight of hypo $=0.025 \times 248=6.2 \mathrm{~g}$
Q. 4 (D)
$\mathrm{KMnO}_{4}+\mathrm{KI}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{MnSO}_{4}+\mathrm{I}_{2}+\mathrm{K}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}$
v.f $=5$ v.f $=1$
$\therefore(\mathrm{eq})_{\mathrm{KMnO4}}=(\mathrm{eq})_{\mathrm{KI}}=1$
Eq. $=$ V.F. \times mole
$1=5 \times$ mole
Mole $=1 / 5$
$\Rightarrow(1 \times 1) \times \mathrm{y}=(0.6 \times 2) \times 10$
$\Rightarrow \mathrm{y}=12 \mathrm{ml}$
Now, (No. of eq. $)_{\text {acid }}=(\text { No. of eq. })_{\mathrm{NaOH}}$
$\Rightarrow \mathrm{N} \times 5=(1 \times 1) \times 12$
$\Rightarrow \mathrm{N}=\frac{12}{5}=2.4$
Q. 13 (C)

Oxidation number of Cr in $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}=+2 \mathrm{x}-14=-2$

$$
\Rightarrow x=+6
$$

Oxidation number of $\mathrm{Cl}^{\text {in }} \mathrm{ClO}_{3}^{-}=\mathrm{x}-6=-1$

$$
\Rightarrow x=+5
$$

Q. 14 (A)

Molarity of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{4}=\frac{1.225 \times 1000}{294 \times 250}=0.0167$

Mili Eq. $\mathrm{Fe}^{2+}=$ mili eq. of $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$
$[\mathrm{M} \times 10] 1=[0.016 \times 25] 6$
$\mathrm{M}=0.25$
For FeCl_{2} concentration $=0.25 \mathrm{~N}$

JEE-MAIN

PREVIOUS YEAR'S

Q. 1 [173]

 $+2 \mathrm{OH}^{-}$
Applying mole - mole analysis

$$
\frac{0.154 \times \mathrm{V}}{8}=\frac{40 \times 0.25}{3} \quad \therefore \mathrm{~V} \simeq 173 \mathrm{ml}
$$

Q. 2 (1)
Q. 3 [6]

$$
\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+2 \mathrm{OH}^{-} \rightleftharpoons 2 \mathrm{CrO}_{4}^{2-}+\mathrm{H}_{2} \mathrm{O}
$$

$$
\mathrm{CrO}_{4}^{2-}
$$

$$
x+(-2 \times 4)=-2
$$

$$
x=6
$$

Q. 4 [24]

$\mathrm{n}_{\mathrm{eq}} \mathrm{Fe}^{2+}=\mathrm{n}_{\mathrm{eq}} \mathrm{C}_{\mathrm{r}} 2 \mathrm{O}_{7}^{2-}$
or, $\left(\frac{15 \times \mathrm{M}_{\mathrm{Fe}^{2+}}}{1000}\right) \times 1=\left(\frac{20 \times 0.03}{1000}\right) \times 6$
$\therefore \mathrm{M}_{\mathrm{Fe}^{2+}}=0.24 \mathrm{M}=24 \times 10^{-2} \mathrm{M}$
Q. 1 (C)
milli mole of Hypo $\quad=0.25 \times 48$

$$
=2 \times \text { milli mole of } \mathrm{Cl}_{2}
$$

milli mole of $\mathrm{Cl}_{2} \quad=\frac{0.25 \times 48}{2}=6 \mathrm{milli}$
mole

$$
=\text { milli mole of } \mathrm{Cl}_{2}=\text { milli }
$$

mole of CaOCl_{2}
So, molarity $=\frac{6}{25} \mathrm{M}=0.24 \mathrm{M}$
Q. 2 (ABD)
$6 \mathrm{I}^{-}+\mathrm{ClO}_{3}^{-}+6 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Cl}^{-}+6 \mathrm{HSO}_{4}^{-}+3 \mathrm{I}_{2}+3 \mathrm{H}_{2} \mathrm{O}$
Hence, I^{-}is oxidised to I_{2}
Coefficient of $\mathrm{HSO}_{4}^{-}=6$
and $\mathrm{H}_{2} \mathrm{O}$ is one of the product.
Hence (A), (B), (D)
Q. 3 (B)

Correct order :

Question Stem for Question Nos. 4 and 5
Q. 4 [1.87 or 1.88]
$\mathrm{Fe}+2 \mathrm{HCl} \longrightarrow \mathrm{FeCl}_{2}+\mathrm{H}_{2}$
x mole x mole
$\mathrm{Fe}^{+2}+\mathrm{MnO}^{-}$
$\mathrm{x} \quad 12.5 \mathrm{ml}$
0.03 M
$\mathrm{n}_{\mathrm{f}}=1 \quad \mathrm{n}_{\mathrm{f}}=5$
$\frac{\mathrm{x}}{10}=\frac{12.5 \times 0.03 \times 5}{1000}$
$\mathrm{x}=0.01875$ ($\mathrm{x}=1.88$ or 1.87)
wt of $\mathrm{Fe}=1.05 \mathrm{~g}$
$\% \mathrm{Fe}=\frac{1.05}{5.6} \times 100=18.75$
Q. $5 \quad$ [18.75]

